Application of entropies for automated diagnosis of epilepsy using EEG signals: A review

被引:359
作者
Acharya, U. Rajendra [1 ,2 ,3 ]
Fujita, H. [4 ]
Sudarshan, Vidya K. [1 ]
Bhat, Shreya [5 ]
Koh, Joel E. W. [1 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[2] SIM Univ, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[3] Univ Malaya, Dept Biomed Engn, Fac Engn, Kuala Lumpur, Malaysia
[4] Iwate Prefectural Univ, Fac Software & Informat Sci, Morioka, Iwate, Japan
[5] Manipal Inst Technol, Dept Biomed Engn, Manipal 576104, Karnataka, India
关键词
Epilepsy; Interictal; EEG; Entropy; Fuzzy; HOS; APPROXIMATE ENTROPY; SEIZURE DETECTION; PERMUTATION ENTROPY; NEURAL-NETWORK; TIME-SERIES; SCALP EEG; CLASSIFICATION; IDENTIFICATION; SYSTEM; QUANTIFICATION;
D O I
10.1016/j.knosys.2015.08.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epilepsy is the neurological disorder of the brain which is difficult to diagnose visually using Electroencephalogram (EEG) signals. Hence, an automated detection of epilepsy using EEG signals will be a useful tool in medical field. The automation of epilepsy detection using signal processing techniques such as wavelet transform and entropies may optimise the performance of the system. Many algorithms have been developed to diagnose the presence of seizure in the EEG signals. The entropy is a nonlinear parameter that reflects the complexity of the EEG signal. Many entropies have been used to differentiate normal, interictal and ictal EEG signals. This paper discusses various entropies used for an automated diagnosis of epilepsy using EEG signals. We have presented unique ranges for various entropies used to differentiate normal, interictal, and ictal EEG signals and also ranked them depending on the ability to discrimination ability of three classes. These entropies can be used to classify the different stages of epilepsy and can also be used for other biomedical applications. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 107 条
[101]  
Xiang J., 2015, J NEUROSCI METHODS
[102]   Epileptic EEG classification based on extreme learning machine and nonlinear features [J].
Yuan, Qi ;
Zhou, Weidong ;
Li, Shufang ;
Cai, Dongmei .
EPILEPSY RESEARCH, 2011, 96 (1-2) :29-38
[103]   Assessing the clinical utility of cancer genomic and proteomic data across tumor types [J].
Yuan, Yuan ;
Van Allen, Eliezer M. ;
Omberg, Larsson ;
Wagle, Nikhil ;
Amin-Mansour, Ali ;
Sokolov, Artem ;
Byers, Lauren A. ;
Xu, Yanxun ;
Hess, Kenneth R. ;
Diao, Lixia ;
Han, Leng ;
Huang, Xuelin ;
Lawrence, Michael S. ;
Weinstein, John N. ;
Stuart, Josh M. ;
Mills, Gordon B. ;
Garraway, Levi A. ;
Margolin, Adam A. ;
Getz, Gad ;
Liang, Han .
NATURE BIOTECHNOLOGY, 2014, 32 (07) :644-+
[104]  
Yuedong Song, 2010, Journal of Biomedical Science & Engineering, V3, P556, DOI 10.4236/jbise.2010.36078
[105]   Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review [J].
Zanin, Massimiliano ;
Zunino, Luciano ;
Rosso, Osvaldo A. ;
Papo, David .
ENTROPY, 2012, 14 (08) :1553-1577
[106]   EMBEDDINGS AND DELAYS AS DERIVED FROM QUANTIFICATION OF RECURRENCE PLOTS [J].
ZBILUT, JP ;
WEBBER, CL .
PHYSICS LETTERS A, 1992, 171 (3-4) :199-203
[107]   Approximate entropy and support vector machines for electroencephalogram signal classification [J].
Zhang, Zhen ;
Zhou, Yi ;
Chen, Ziyi ;
Tian, Xianghua ;
Du, Shouhong ;
Huang, Ruimei .
NEURAL REGENERATION RESEARCH, 2013, 8 (20) :1844-1852