Catalytic abatement of volatile organic compounds assisted by non-thermal plasma - Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode

被引:177
作者
Subrahmanyam, Ch.
Magureanu, A.
Renken, A.
Kiwi-Minsker, L. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, LGRC, CH-1015 Lausanne, Switzerland
[2] Natl Inst Lasers Plasma & Radiat Phys, Bucharest, Romania
关键词
volatile organic compounds abatement; non-thermal plasma; dielectric barrier discharge; plasma-assisted catalysis; sintered metal fibers;
D O I
10.1016/j.apcatb.2006.01.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel catalytic reactor with dielectric barrier discharge (DBD) at atmospheric pressure was developed for the abatement of volatile organic compounds (VOCs). The novelty of DBD reactor is the metallic catalyst serving also as the inner electrode. The catalytic electrode was prepared from sintered metal fibers (SMF) in the form of a cylindrical tube. Oxides of Mn and Co were deposited on SMF by impregnation. Decomposition of toluene taken as the model VOC compound (< 1000 ppm in air) was investigated. The catalyst composition, toluene concentration, applied voltage and frequency were systematically varied to evaluate the performance of the DBD reactor. At 100 ppm of toluene, the conversion similar to 100% was achieved in the DBD reactor using a specific input energy (SIE) similar to 235 J/l independently of the chemical composition of the SMF catalytic electrode, but the selectivity to CO2 was observed to be a function of the catalyst composition. The MnOx/SMF catalytic electrode showed the best performance towards total oxidation. At a SIE of 295 J/l, the selectivity to CO2, was 80% with 100% conversion of toluene. No carbon solid residues were deposited on the electrode. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 156
页数:7
相关论文
共 30 条
[1]   Oxidation of 2-heptanone in air by a DBD-type plasma generated within a honeycomb monolith supported Pt-based catalyst [J].
Ayrault, C ;
Barrault, J ;
Blin-Simiand, N ;
Jorand, F ;
Pasquiers, S ;
Rousseau, A ;
Tatibouët, JM .
CATALYSIS TODAY, 2004, 89 (1-2) :75-81
[2]   Gas discharge plasmas and their applications [J].
Bogaerts, A ;
Neyts, E ;
Gijbels, R ;
van der Mullen, J .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2002, 57 (04) :609-658
[3]   Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment [J].
Chang, MB ;
Lee, HM .
CATALYSIS TODAY, 2004, 89 (1-2) :109-115
[4]  
Czernichowski A., 1993, NATO ASI SERIES G, V34, P371
[5]   Toluene and butyl acetate removal from air by plasma-catalytic system [J].
Demidiouk, V ;
Moon, SI ;
Chae, JO .
CATALYSIS COMMUNICATIONS, 2003, 4 (02) :51-56
[6]  
DUNAND N, 1999, THESIS EPFL, P1
[7]   Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition [J].
Einaga, H ;
Ibusuki, T ;
Futamura, S .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2001, 37 (05) :1476-1482
[8]   Factors and intermediates governing byproduct distribution for decomposition of butane in nonthermal plasma [J].
Futamura, S ;
Zhang, AH ;
Prieto, G ;
Yamamoto, T .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1998, 34 (05) :967-974
[9]   Synergistic effect of silent discharge plasma and catalysts on benzene decomposition [J].
Futamura, S ;
Einaga, H ;
Kabashima, H ;
Hwan, LY .
CATALYSIS TODAY, 2004, 89 (1-2) :89-95
[10]   An energy-consumption and byproduct-generation analysis of the discharge nonthermal plasma-chemical NO-reduction process [J].
Gal, A ;
Kurahashi, M ;
Kuzumoto, M .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (10) :1163-1168