Selected reaction monitoring for quantitative proteomics: a tutorial

被引:1075
作者
Lange, Vinzenz [1 ,2 ]
Picotti, Paola [1 ]
Domon, Bruno [1 ]
Aebersold, Ruedi [1 ,2 ,3 ,4 ]
机构
[1] ETH, Inst Mol Syst Biol, Zurich, Switzerland
[2] Competence Ctr Syst Physiol & Metab Dis, Zurich, Switzerland
[3] Inst Syst Biol, Seattle, WA USA
[4] Univ Zurich, Fac Sci, Zurich, Switzerland
基金
美国国家卫生研究院; 瑞士国家科学基金会;
关键词
mass spectrometry; MRM; proteomics; quantitative; SRM;
D O I
10.1038/msb.2008.61
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Systems biology relies on data sets in which the same group of proteins is consistently identified and precisely quantified across multiple samples, a requirement that is only partially achieved by current proteomics approaches. Selected reaction monitoring (SRM)-also called multiple reaction monitoring-is emerging as a technology that ideally complements the discovery capabilities of shotgun strategies by its unique potential for reliable quantification of analytes of low abundance in complex mixtures. In an SRM experiment, a predefined precursor ion and one of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted peptide can constitute a definitive assay. Typically, a large number of peptides are quantified during a single LC-MS experiment. This tutorial explains the application of SRM for quantitative proteomics, including the selection of proteotypic peptides and the optimization and validation of transitions. Furthermore, normalization and various factors affecting sensitivity and accuracy are discussed.
引用
收藏
页数:14
相关论文
共 52 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]  
Barr JR, 1996, CLIN CHEM, V42, P1676
[3]   NCBI GEO: mining tens of millions of expression profiles - database and tools update [J].
Barrett, Tanya ;
Troup, Dennis B. ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Rudnev, Dmitry ;
Evangelista, Carlos ;
Kim, Irene F. ;
Soboleva, Alexandra ;
Tomashevsky, Maxim ;
Edgar, Ron .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D760-D765
[4]   Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides [J].
Beynon, RJ ;
Doherty, MK ;
Pratt, JM ;
Gaskell, SJ .
NATURE METHODS, 2005, 2 (08) :587-589
[5]   PhosphoPep-a phosphoproteome resource for systems biology research in Drosophila Kc167 cells [J].
Bodenmiller, Bernd ;
Malmstrom, Johan ;
Gerrits, Bertran ;
Campbell, David ;
Lam, Henry ;
Schmidt, Alexander ;
Rinner, Oliver ;
Mueller, Lukas N. ;
Shannon, Paul T. ;
Pedrioli, Patrick G. ;
Panse, Christian ;
Lee, Hoo-Keun ;
Schlapbach, Ralph ;
Aebersold, Ruedi .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   Absolute quantification strategies in proteomics based on mass spectrometry [J].
Brönstrup, M .
EXPERT REVIEW OF PROTEOMICS, 2004, 1 (04) :503-512
[8]   Isotope-labeled protein standards [J].
Brun, Virginie ;
Dupuis, Alain ;
Adrait, Annie ;
Marcellin, Marlene ;
Thomas, Damien ;
Court, Magali ;
Vandenesch, Francois ;
Garin, Jerome .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (12) :2139-2149
[9]   MINT: the molecular INTeraction database [J].
Chatr-aryamontri, Andrew ;
Ceol, Arnaud ;
Palazzi, Luisa Montecchi ;
Nardelli, Giuliano ;
Schneider, Maria Victoria ;
Castagnoli, Luisa ;
Cesareni, Gianni .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D572-D574
[10]   Open source system for analyzing, validating, and storing protein identification data [J].
Craig, R ;
Cortens, JP ;
Beavis, RC .
JOURNAL OF PROTEOME RESEARCH, 2004, 3 (06) :1234-1242