Probing the Failure Mechanism of SnO2 Nanowires for Sodium-Ion Batteries

被引:290
作者
Gu, Meng [1 ]
Kushima, Akihiro [2 ,3 ]
Shao, Yuyan [5 ]
Zhang, Ji-Guang [5 ]
Liu, Jun [5 ]
Browning, Nigel D. [4 ]
Li, Ju [2 ,3 ]
Wang, Chongmin [1 ]
机构
[1] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA
[5] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
关键词
Na-ion battery; SnO2; anode; in situ TEM; Na diffusion; DFT calculation; failure mechanism; IN-SITU TEM; HIGH-CAPACITY; HIGH-PERFORMANCE; ELECTROCHEMICAL LITHIATION; NANOSTRUCTURED SILICON; LOW-COST; ANODE; NANOPARTICLES; EVOLUTION; CATHODE;
D O I
10.1021/nl402633n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nonlithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries. Using in situ transmission electron microscopy in combination with density functional theory calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries (Huang, J. Y.; et al. Science 2010, 330, 1515-1520). Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles dispersed in Na2O matrix. With further Na insertion, the NaxSn crystallized into Na15Sn4 (x = 3.75). Upon extraction of Na (desodiation), the NaxSn transforms to Sn nanoparticles. Associated with the dealloying, pores are found to form, leading to a structure of Sn particles confined in a hollow matrix of Na2O. These pores greatly increase electrical impedance, therefore accounting for the poor cyclability of SnO2. DFT calculations indicate that Na+ diffuses 30 times slower than Li+ in SnO2, in agreement with in situ TEM measurement. Insertion of Na can chemomechanically soften the reaction product to a greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2 significantly less dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.
引用
收藏
页码:5203 / 5211
页数:9
相关论文
共 42 条
[1]   Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes [J].
Baranchugov, V. ;
Markevich, E. ;
Pollak, E. ;
Salitra, G. ;
Aurbach, D. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :796-800
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Silicon nanowire anode: Improved battery life with capacity-limited cycling [J].
Chakrapani, Vidhya ;
Rusli, Florencia ;
Filler, Michael A. ;
Kohl, Paul A. .
JOURNAL OF POWER SOURCES, 2012, 205 :433-438
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode [J].
Cui, Li-Feng ;
Hu, Liangbing ;
Wu, Hui ;
Choi, Jang Wook ;
Cui, Yi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) :A592-A596
[6]   A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J].
Ellis, B. L. ;
Makahnouk, W. R. M. ;
Makimura, Y. ;
Toghill, K. ;
Nazar, L. F. .
NATURE MATERIALS, 2007, 6 (10) :749-753
[7]   Fabrication of silica nanotube arrays from vertical silicon nanowire templates [J].
Fan, R ;
Wu, YY ;
Li, DY ;
Yue, M ;
Majumdar, A ;
Yang, PD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (18) :5254-5255
[8]   Materials become insensitive to flaws at nanoscale:: Lessons from nature [J].
Gao, HJ ;
Ji, BH ;
Jäger, IL ;
Arzt, E ;
Fratzl, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) :5597-5600
[9]   Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries [J].
Gu, Meng ;
Genc, Arda ;
Belharouak, Ilias ;
Wang, Dapeng ;
Amine, Khalil ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
CHEMISTRY OF MATERIALS, 2013, 25 (11) :2319-2326
[10]   Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries [J].
Gu, Meng ;
Belharouak, Ilias ;
Genc, Arda ;
Wang, Zhiguo ;
Wang, Dapeng ;
Amine, Khalil ;
Gao, Fei ;
Zhou, Guangwen ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
NANO LETTERS, 2012, 12 (10) :5186-5191