Nanostructured p-n Junctions for Kinetic-to-Electrical Energy Conversion

被引:97
作者
Briscoe, Joe [1 ]
Stewart, Mark [2 ]
Vopson, Melvin [2 ]
Cain, Markys [2 ]
Weaver, Paul M. [2 ]
Dunn, Steve [1 ]
机构
[1] Queen Mary Univ London, Sch Engn & Mat Sci, Ctr Mat Res, London E1 4NS, England
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
基金
英国工程与自然科学研究理事会;
关键词
energy harvesting; hybrid; p-n junctions; piezoelectrics; zinc oxide; DEPOLARIZATION-FIELD; ZNO; POLARIZATION; COMPLEX; SYSTEM; CHARGE; FILMS;
D O I
10.1002/aenm.201200205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Piezoelectric ZnO nanorods grown on a flexible substrate are combined with the p-type semiconducting polymer PEDOT:PSS to produce a p-n junction device that successfully demonstrates kinetic-to-electrical energy conversion. Both the voltage and current output of the devices are measured to be in the range of 10 mV and 10 mu A cm-2. Combining these figures for the best device gives a maximum possible power density of 0.4 mW cm-3. Systematic testing of the devices is performed showing that the voltage output increases linearly with applied stress, and is reduced significantly by illumination with super-band gap light. This provides strong evidence that the voltage output results from piezoelectric effects in the ZnO. The behavior of the devices is explained by considering the time-dependent changes in band structure resulting from the straining of a piezoelectric material within a p-n junction. It is shown that the rate of screening of the depolarisation field determines the power output of a piezoelectric energy harvesting device. This model is consistent with the behavior of a number of previous devices utilising the piezoelectric effect in ZnO.
引用
收藏
页码:1261 / 1268
页数:8
相关论文
共 46 条
[11]  
Fridkin V.M., 1980, FERROELECTRIC SEMICO
[12]   Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3 [J].
Giocondi, JL ;
Rohrer, GS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (35) :8275-8277
[13]   Low-temperature wafer-scale production of ZnO nanowire arrays [J].
Greene, LE ;
Law, M ;
Goldberger, J ;
Kim, F ;
Johnson, JC ;
Zhang, YF ;
Saykally, RJ ;
Yang, PD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (26) :3031-3034
[14]   Self-Powered System with Wireless Data Transmission [J].
Hu, Youfan ;
Zhang, Yan ;
Xu, Chen ;
Lin, Long ;
Snyder, Robert L. ;
Wang, Zhong Lin .
NANO LETTERS, 2011, 11 (06) :2572-2577
[15]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[16]   PIEZOELECTRICITY AND CONDUCTIVITY IN ZNO AND CDS [J].
HUTSON, AR .
PHYSICAL REVIEW LETTERS, 1960, 4 (10) :505-507
[17]   A DEVICE TYPE PHOTOCATALYST USING OPPOSITELY POLARIZED FERROELECTRIC SUBSTRATES [J].
INOUE, Y ;
SATO, K ;
SATO, K ;
MIYAMA, H .
CHEMICAL PHYSICS LETTERS, 1986, 129 (01) :79-81
[18]   PIEZOELECTRIC TRANSDUCER MATERIALS [J].
JAFFE, H ;
BERLINCOURT, DA .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1965, 53 (10) :1372-+
[19]  
Joo J, 2011, NAT MATER, V10, P596, DOI [10.1038/nmat3069, 10.1038/NMAT3069]
[20]   Atomic polarization and local reactivity on ferroelectric surfaces: A new route toward complex nanostructures [J].
Kalinin, SV ;
Bonnell, DA ;
Alvarez, T ;
Lei, X ;
Hu, Z ;
Ferris, JH ;
Zhang, Q ;
Dunn, S .
NANO LETTERS, 2002, 2 (06) :589-593