Linear and non-linear system identification using separable least-squares

被引:68
作者
Bruls, J [1 ]
Chou, CT [1 ]
Haverkamp, BRJ [1 ]
Verhaegen, M [1 ]
机构
[1] Delft Univ Technol, Dept Elect Engn, Syst & Control Lab, NL-2600 GA Delft, Netherlands
关键词
linear models; non-linear optimisation; parameter estimation; state space models; system identification; Wiener models;
D O I
10.1016/S0947-3580(99)70146-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We demonstrate how the separable least-squares technique of Golub and Pereyra can be exploited in the identification of both linear and non-linear systems based on the prediction error formulation. The model classes to be considered here are the output error model and innovations model in the linear case and the Wiener system in the Pion-linear case. This technique together with a suitable choice of parametrisation allow us to solve, in the linear case, the associated optimisation problem using only np parameters instead of the usual n(m + p) + mp parameters when canonical forms are used, where n, m and p denote respectively the number of states, inputs and outputs, We also prove under certain assumptions that the separable optimisation method is numerically better conditioned than its non-separable counterpart. Successful operations of these identification algorithms are demonstrated by applying them to two sets of industrial data: an industrial dryer in the linear case and a high-purity distillation column in the non-linear case.
引用
收藏
页码:116 / 128
页数:13
相关论文
共 31 条
[21]  
SJOBERG J, 1997, IEEE WORKSH NEUR NET
[22]   A NEW ALGORITHM FOR L2 OPTIMAL-MODEL REDUCTION [J].
SPANOS, JT ;
MILMAN, MH ;
MINGORI, DL .
AUTOMATICA, 1992, 28 (05) :897-909
[23]  
van Overschee P., 1995, Subspace Identification for Linear Systems: Theory, Implementation, Application
[24]   Identification of the temperature product quality relationship in a multi-component distillation column [J].
Verhaegen, M .
CHEMICAL ENGINEERING COMMUNICATIONS, 1998, 163 :111-132
[25]   SUBSPACE MODEL IDENTIFICATION .1. THE OUTPUT-ERROR STATE-SPACE MODEL IDENTIFICATION CLASS OF ALGORITHMS [J].
VERHAEGEN, M ;
DEWILDE, P .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 56 (05) :1187-1210
[26]   IDENTIFICATION OF THE DETERMINISTIC PART OF MIMO STATE-SPACE MODELS GIVEN IN INNOVATIONS FORM FROM INPUT-OUTPUT DATA [J].
VERHAEGEN, M .
AUTOMATICA, 1994, 30 (01) :61-74
[27]  
VERHAEGEN M, 1994, 16594 TR R DLR OB
[28]   Subspace-based methods for the identification of linear time-invariant systems [J].
Viberg, M .
AUTOMATICA, 1995, 31 (12) :1835-1851
[29]   Identifying MIMO Wiener systems using subspace model identification methods [J].
Westwick, D ;
Verhaegen, M .
SIGNAL PROCESSING, 1996, 52 (02) :235-258
[30]   CONVERGENCE ANALYSIS OF RECURSIVE-IDENTIFICATION ALGORITHMS BASED ON THE NONLINEAR WIENER MODEL [J].
WIGREN, T .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (11) :2191-2206