Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

被引:600
作者
Hansen, Katja [1 ]
Biegler, Franziska [2 ]
Ramakrishnan, Raghunathan [3 ,4 ]
Pronobis, Wiktor [2 ]
von Lilienfeld, O. Anatole [3 ,4 ,5 ]
Mueller, Klaus-Robert [2 ,6 ]
Tkatchenko, Alexandre [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[2] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[3] Univ Basel, Inst Phys Chem, CH-4056 Basel, Switzerland
[4] Univ Basel, Dept Chem, Natl Ctr Computat Design & Discovery Novel Mat, CH-4056 Basel, Switzerland
[5] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA
[6] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2015年 / 6卷 / 12期
基金
欧洲研究理事会; 瑞士国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
VIRTUAL EXPLORATION; UNIVERSE;
D O I
10.1021/acs.jpclett.5b00831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the "holy grail" of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.
引用
收藏
页码:2326 / 2331
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 2008, Handbook of Molecular Descriptors
[2]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[3]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[4]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[5]   BOND ENERGIES [J].
BENSON, SW .
JOURNAL OF CHEMICAL EDUCATION, 1965, 42 (09) :502-&
[6]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[7]   Virtual exploration of the small-molecule chemical universe below 160 daltons [J].
Fink, T ;
Bruggesser, H ;
Reymond, JL .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (10) :1504-1508
[8]   Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: Assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery [J].
Fink, Tobias ;
Reymond, Jean-Louis .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2007, 47 (02) :342-353
[9]   Prediction of Intramolecular Polarization of Aromatic Amino Acids Using Kriging Machine Learning [J].
Fletcher, Timothy L. ;
Davie, Stuart J. ;
Popelier, Paul L. A. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (09) :3708-3719
[10]  
Forman G., 2003, Journal of Machine Learning Research, V3, P1289, DOI 10.1162/153244303322753670