Non-classical light generated by quantum-noise-driven cavity optomechanics

被引:306
作者
Brooks, Daniel W. C. [1 ]
Botter, Thierry [1 ]
Schreppler, Sydney [1 ]
Purdy, Thomas P. [1 ]
Brahms, Nathan [1 ]
Stamper-Kurn, Dan M. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
INDUCED TRANSPARENCY; RADIATION-PRESSURE; GROUND-STATE; REDUCTION;
D O I
10.1038/nature11325
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optomechanical systems(1), in which light drives and is affected by the motion of a massive object, will comprise a new framework for nonlinear quantum optics, with applications ranging from the storage(2-4) and transduction(5,6) of quantum information to enhanced detection sensitivity in gravitational wave detectors(7,8). However, quantum optical effects in optomechanical systems have remained obscure, because their detection requires the object's motion to be dominated by vacuum fluctuations in the optical radiation pressure; so far, direct observations have been stymied by technical and thermal noise. Here we report an implementation of cavity optomechanics(9,10) using ultracold atoms in which the collective atomic motion is dominantly driven by quantum fluctuations in radiation pressure. The back-action of this motion onto the cavity light field produces ponderomotive squeezing(11,12). We detect this quantum phenomenon by measuring sub-shot-noise optical squeezing. Furthermore, the system acts as a low-power, high-gain, nonlinear parametric amplifier for optical fluctuations, demonstrating a gain of 20 dB with a pump corresponding to an average of only seven intracavity photons. These findings may pave the way for low-power quantum optical devices, surpassing quantum limits on position and force sensing(13,14), and the control and measurement of motion in quantum gases.
引用
收藏
页码:476 / 480
页数:5
相关论文
共 27 条
[1]   An upper limit on the stochastic gravitational-wave background of cosmological origin [J].
Abbott, B. P. ;
Abbott, R. ;
Acernese, F. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Alshourbagy, M. ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Antonucci, F. ;
Aoudia, S. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Arun, K. G. ;
Aso, Y. ;
Aston, S. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballardin, G. ;
Ballmer, S. ;
Barker, C. ;
Barker, D. ;
Barone, F. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barsuglia, M. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Bauer, Th. S. ;
Behnke, B. ;
Beker, M. ;
Benacquista, M. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bigotta, S. ;
Bilenko, I. A. ;
Billingsley, G. ;
Birindelli, S. ;
Biswas, R. ;
Bizouard, M. A. .
NATURE, 2009, 460 (7258) :990-994
[2]   Linear amplifier model for optomechanical systems [J].
Botter, Thierry ;
Brooks, Daniel W. C. ;
Brahms, Nathan ;
Schreppler, Sydney ;
Stamper-Kurn, Dan M. .
PHYSICAL REVIEW A, 2012, 85 (01)
[3]  
BRAGINSKY VB, 1967, SOV PHYS JETP-USSR, V25, P653
[4]   Optical Detection of the Quantization of Collective Atomic Motion [J].
Brahms, Nathan ;
Botter, Thierry ;
Schreppler, Sydney ;
Brooks, Daniel W. C. ;
Stamper-Kurn, Dan M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[5]   Cavity optomechanics with a Bose-Einstein condensate [J].
Brennecke, Ferdinand ;
Ritter, Stephan ;
Donner, Tobias ;
Esslinger, Tilman .
SCIENCE, 2008, 322 (5899) :235-238
[6]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[7]   QUANTUM-MECHANICAL RADIATION-PRESSURE FLUCTUATIONS IN AN INTERFEROMER [J].
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1980, 45 (02) :75-79
[8]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[9]   Introduction to quantum noise, measurement, and amplification [J].
Clerk, A. A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Marquardt, Florian ;
Schoelkopf, R. J. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1155-1208
[10]   Squeezed-state source using radiation-pressure-induced rigidity [J].
Corbitt, T ;
Chen, YB ;
Khalili, F ;
Ottaway, D ;
Vyatchanin, S ;
Whitcomb, S ;
Mavalvala, N .
PHYSICAL REVIEW A, 2006, 73 (02)