Alexander invariants of complex hyperplane arrangements

被引:18
作者
Cohen, DC [1 ]
Suciu, AI
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
arrangement; braid monodromy; Alexander invariant; Chen groups;
D O I
10.1090/S0002-9947-99-02206-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an arrangement of n complex hyperplanes. The fundamental group of the complement of A is determined by a braid monodromy homomorphism, alpha : F-s --> P-n. Using the Gassner representation of the pure braid group, we find an explicit presentation for the Alexander invariant of A. From this presentation, we obtain combinatorial lower bounds for the ranks of the Chen groups of A. We also provide a combinatorial criterion for when these lower bounds are attained.
引用
收藏
页码:4043 / 4067
页数:25
相关论文
共 33 条
[1]  
ARVOLA W, ARRANGEMENTS COHOMOL
[2]  
Becker Thomas, 1993, GRAD TEXTS MATH, V141
[3]  
BIRMAN JS, 1975, ANN MATH STUDIES, V82
[4]   INTEGRATION IN FREE GROUPS [J].
CHEN, KT .
ANNALS OF MATHEMATICS, 1951, 54 (01) :147-162
[5]  
COHEN D. C., 1995, CENTENNIAL, P45, DOI [10.1090/conm/181/02029, DOI 10.1090/CONM/181/02029]
[6]   Homology of iterated semidirect products of free groups [J].
Cohen, DC ;
Suciu, AI .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 126 (1-3) :87-120
[7]   The braid monodromy of plane algebraic curves and hyperplane arrangements [J].
Cohen, DC ;
Suciu, AI .
COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (02) :285-315
[8]  
CORDOVIL R, 1995, B UNIONE MAT ITAL, V9B, P399
[9]  
Cox D., 1997, UNDERGRADUATE TEXTS, V2nd edn
[10]   DERIVED MODULE OF A HOMOMORPHISM [J].
CROWELL, RH .
ADVANCES IN MATHEMATICS, 1971, 6 (02) :210-&