Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications

被引:444
作者
Chang, Haixin [1 ,3 ]
Wu, Hongkai [1 ,2 ]
机构
[1] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Hong Kong Univ Sci & Technol, Dept Chem, Hong Kong, Hong Kong, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
关键词
PERFORMANCE ANODE MATERIAL; SINGLE-LAYER GRAPHENE; LITHIUM-ION BATTERY; IN-SITU SYNTHESIS; ELECTROCHEMICAL DEPOSITION; HYDROTHERMAL SYNTHESIS; METAL NANOPARTICLES; HIGHLY EFFICIENT; ELECTROPHORETIC DEPOSITION; PHOTOCATALYTIC ACTIVITY;
D O I
10.1039/c3ee42518e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene, a two-dimensional carbon sheet with one atom thickness and one of the thinnest materials in universe, has inspired huge interest in physics, materials science, chemistry and biology. However, pure graphene sheets are limited for many applications despite their excellent characteristics and scientists face challenges to induce more and controlled functionality. Therefore graphene nanocomposites or hybrids are attracting increasing efforts for real applications in energy and environmental areas by introducing controlled functional building blocks to graphene. In this Review, we first give a brief introduction of graphene's unique physical and chemical properties followed by various preparation and functionalization methods for graphene nanocomposites in the second section. We focus on recent energy-related progress of graphene nanocomposites in solar energy conversion (e.g., photovoltaic and photoelectrochemical devices, artificial photosynthesis) and electrochemical energy devices (e.g., lithium ion battery, supercapacitor, fuel cell) in the third section. We then review the advances in environmental applications of functionalized graphene nanocomposites for the detection and removal of heavy metal ions, organic pollutants, gas and bacteria in the fourth section. Finally a conclusion and perspective is given to discuss the remaining challenges for graphene nanocomposites in energy and environmental science.
引用
收藏
页码:3483 / 3507
页数:25
相关论文
共 292 条
[31]   Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities [J].
Chen, Jun Song ;
Wang, Zhiyu ;
Dong, Xiao Chen ;
Chen, Peng ;
Lou, Xiong Wen .
NANOSCALE, 2011, 3 (05) :2158-2161
[32]   Hg(II) Ion Detection Using Thermally Reduced Graphene Oxide Decorated with Functionalized Gold Nanoparticles [J].
Chen, Kehung ;
Lu, Ganhua ;
Chang, Jingbo ;
Mao, Shun ;
Yu, Kehan ;
Cui, Shumao ;
Chen, Junhong .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :4057-4062
[33]   Nitrogen-Doped Graphene/ZnSe Nanocomposites: Hydrothermal Synthesis and Their Enhanced Electrochemical and Photocatalytic Activities [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Li, Hui-Hui ;
Yang, Jing-Jing ;
Wang, Zheng ;
Yao, Hong-Bin ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (01) :712-719
[34]   Facile Preparation of Graphene-Copper Nanoparticle Composite by in Situ Chemical Reduction for Electrochemical Sensing of Carbohydrates [J].
Chen, Qiwen ;
Zhang, Luyan ;
Chen, Gang .
ANALYTICAL CHEMISTRY, 2012, 84 (01) :171-178
[35]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[36]   Surface transfer p-type doping of epitaxial graphene [J].
Chen, Wei ;
Chen, Shi ;
Qi, Dong Chen ;
Gao, Xing Yu ;
Wee, Andrew Thye Shen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (34) :10418-10422
[37]   Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification [J].
Chen, Yunqiang ;
Chen, Libin ;
Bai, Hua ;
Li, Lei .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (06) :1992-2001
[38]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[39]   Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors [J].
Cheng, Yingwen ;
Lu, Songtao ;
Zhang, Hongbo ;
Varanasi, Chakrapani V. ;
Liu, Jie .
NANO LETTERS, 2012, 12 (08) :4206-4211
[40]   Noncovalent functionalization of graphene with end-functional polymers [J].
Choi, Eun-Young ;
Han, Tae Hee ;
Hong, Jihyun ;
Kim, Ji Eun ;
Lee, Sun Hwa ;
Kim, Hyun Wook ;
Kim, Sang Ouk .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (10) :1907-1912