Ladder-Type Dithienonaphthalene-Based Donor-Acceptor Copolymers for Organic Solar Cells

被引:41
作者
Ma, Yunlong [1 ]
Zheng, Qingdong [1 ]
Yin, Zhigang [1 ]
Cai, Dongdong [1 ]
Chen, Shan-Ci [1 ]
Tang, Changquan [1 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
基金
美国国家科学基金会;
关键词
LOW-BANDGAP POLYMERS; FIELD-EFFECT TRANSISTORS; OPEN-CIRCUIT VOLTAGE; HIGH-PERFORMANCE; CONJUGATED POLYMERS; HIGHLY EFFICIENT; PHOTOVOLTAIC PROPERTIES; SEMICONDUCTING POLYMERS; ENHANCED EFFICIENCY; GAP POLYMERS;
D O I
10.1021/ma400696e
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A novel ladder-type dithienonaphthalene (DTN) was designed and synthesized as an electron-rich unit for constructing donor-acceptor copolymers. Different acceptor moieties, including benzo[c][1,2,5]thiadiazole (BT), 5,6-bis(hexyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (TBT), and 2,5-bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,SH)-dione (TDPP), were used as electron-deficient units for the target copolymers. These copolymers (PDTNBT, PDTNTBT, and PDTNTDPP) were obtained via the Stile coupling reaction and characterized by H-1 NMR spectroscopy, UV-vis absorption spectroscopy, cyclic voltammetry, and gel permeation chromatography (GPC). Owing to the four solubilizing alkyl chains on the DTN unit, all the three copolymers have good solubility in common solvents. Among these polymers, PDTNTBT exhibits the highest space-charge limit current (SCLC) hole mobility of 2.13 x 10(-5) cm(2) V-1 s(-1), which is beneficial for achieving high performance solar cells. Under the simulated AM 1.5G illumination condition (100 mW/cm(2)), solar cells based on PDTNTBT:PC71BM (1:3, w/w) exhibit a power conversion efficiency (PCE) of 4.8% with a current density of 10.3 mA cm(-2), an open-circuit voltage of 0.86 V, and a fill factor of 54%. With the same device fabrication method, PDTNTDPP:PC71BM (1:3, w/w) and PDTNBT:PC71BM (1:3, w/w) based devices exhibit efficiencies of 1.52% and 2.79%, respectively. Furthermore, inverted solar cells based on these copolymer blends are also fabricated. The inverted devices based on PDTNTDPP:PC71BM (1:2, w/w) and PDTNBT:PC71BM (1:2, w/w) exhibit PCEs of 1.60% and 2.89%, respectively, which are similar to their corresponding conventional devices. And the inverted devices based on PDTNTBT:PC71BM (1:2, w/w) show a higher PCE of 5.0%, and more importantly, they are quite stable as demonstrated by the 4.75% PCE after ambient storage for two months.
引用
收藏
页码:4813 / 4821
页数:9
相关论文
共 67 条
[31]   Efficient inverted polymer solar cells [J].
Li, G. ;
Chu, C. -W. ;
Shrotriya, V. ;
Huang, J. ;
Yang, Y. .
APPLIED PHYSICS LETTERS, 2006, 88 (25)
[32]   Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control [J].
Li, Weiwei ;
Roelofs, W. S. Christian ;
Wienk, Martijn M. ;
Janssen, Rene A. J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (33) :13787-13795
[33]   For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% [J].
Liang, Yongye ;
Xu, Zheng ;
Xia, Jiangbin ;
Tsai, Szu-Ting ;
Wu, Yue ;
Li, Gang ;
Ray, Claire ;
Yu, Luping .
ADVANCED MATERIALS, 2010, 22 (20) :E135-+
[34]   Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties [J].
Liang, Yongye ;
Feng, Danqin ;
Wu, Yue ;
Tsai, Szu-Ting ;
Li, Gang ;
Ray, Claire ;
Yu, Luping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (22) :7792-7799
[35]   Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer [J].
Liao, Hua-Hsien ;
Chen, Li-Min ;
Xu, Zheng ;
Li, Gang ;
Yang, Yang .
APPLIED PHYSICS LETTERS, 2008, 92 (17)
[36]   Multiple Functionalities of Polyfluorene Grafted with Metal Ion-Intercalated Crown Ether as an Electron Transport Layer for Bulk-Heterojunction Polymer Solar Cells: Optical Interference, Hole Blocking, Interfacial Dipole, and Electron Conduction [J].
Liao, Sih-Hao ;
Li, Yi-Lun ;
Jen, Tzu-Hao ;
Cheng, Yu-Shan ;
Chen, Show-An .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (35) :14271-14274
[37]   Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J].
Ma, WL ;
Yang, CY ;
Gong, X ;
Lee, K ;
Heeger, AJ .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (10) :1617-1622
[38]   Design of Semiconducting Indacenodithiophene Polymers for High Performance Transistors and Solar Cells [J].
Mcculloch, Iain ;
Ashraf, Raja Shahid ;
Biniek, Laure ;
Bronstein, Hugo ;
Combe, Craig ;
Donaghey, Jenny E. ;
James, David I. ;
Nielsen, Christian B. ;
Schroeder, Bob C. ;
Zhang, Weimin .
ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (05) :714-722
[39]   Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols [J].
Peet, J. ;
Kim, J. Y. ;
Coates, N. E. ;
Ma, W. L. ;
Moses, D. ;
Heeger, A. J. ;
Bazan, G. C. .
NATURE MATERIALS, 2007, 6 (07) :497-500
[40]   Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells [J].
Piliego, Claudia ;
Holcombe, Thomas W. ;
Douglas, Jessica D. ;
Woo, Claire H. ;
Beaujuge, Pierre M. ;
Frechet, Jean M. J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (22) :7595-+