Ladder-Type Dithienonaphthalene-Based Donor-Acceptor Copolymers for Organic Solar Cells

被引:41
作者
Ma, Yunlong [1 ]
Zheng, Qingdong [1 ]
Yin, Zhigang [1 ]
Cai, Dongdong [1 ]
Chen, Shan-Ci [1 ]
Tang, Changquan [1 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
基金
美国国家科学基金会;
关键词
LOW-BANDGAP POLYMERS; FIELD-EFFECT TRANSISTORS; OPEN-CIRCUIT VOLTAGE; HIGH-PERFORMANCE; CONJUGATED POLYMERS; HIGHLY EFFICIENT; PHOTOVOLTAIC PROPERTIES; SEMICONDUCTING POLYMERS; ENHANCED EFFICIENCY; GAP POLYMERS;
D O I
10.1021/ma400696e
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A novel ladder-type dithienonaphthalene (DTN) was designed and synthesized as an electron-rich unit for constructing donor-acceptor copolymers. Different acceptor moieties, including benzo[c][1,2,5]thiadiazole (BT), 5,6-bis(hexyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (TBT), and 2,5-bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,SH)-dione (TDPP), were used as electron-deficient units for the target copolymers. These copolymers (PDTNBT, PDTNTBT, and PDTNTDPP) were obtained via the Stile coupling reaction and characterized by H-1 NMR spectroscopy, UV-vis absorption spectroscopy, cyclic voltammetry, and gel permeation chromatography (GPC). Owing to the four solubilizing alkyl chains on the DTN unit, all the three copolymers have good solubility in common solvents. Among these polymers, PDTNTBT exhibits the highest space-charge limit current (SCLC) hole mobility of 2.13 x 10(-5) cm(2) V-1 s(-1), which is beneficial for achieving high performance solar cells. Under the simulated AM 1.5G illumination condition (100 mW/cm(2)), solar cells based on PDTNTBT:PC71BM (1:3, w/w) exhibit a power conversion efficiency (PCE) of 4.8% with a current density of 10.3 mA cm(-2), an open-circuit voltage of 0.86 V, and a fill factor of 54%. With the same device fabrication method, PDTNTDPP:PC71BM (1:3, w/w) and PDTNBT:PC71BM (1:3, w/w) based devices exhibit efficiencies of 1.52% and 2.79%, respectively. Furthermore, inverted solar cells based on these copolymer blends are also fabricated. The inverted devices based on PDTNTDPP:PC71BM (1:2, w/w) and PDTNBT:PC71BM (1:2, w/w) exhibit PCEs of 1.60% and 2.89%, respectively, which are similar to their corresponding conventional devices. And the inverted devices based on PDTNTBT:PC71BM (1:2, w/w) show a higher PCE of 5.0%, and more importantly, they are quite stable as demonstrated by the 4.75% PCE after ambient storage for two months.
引用
收藏
页码:4813 / 4821
页数:9
相关论文
共 67 条
[41]   EFFICIENT 2-LAYER LEDS ON A POLYMER BLEND BASIS [J].
POMMEREHNE, J ;
VESTWEBER, H ;
GUSS, W ;
MAHRT, RF ;
BASSLER, H ;
PORSCH, M ;
DAUB, J .
ADVANCED MATERIALS, 1995, 7 (06) :551-554
[42]   A Planar Copolymer for High Efficiency Polymer Solar Cells [J].
Qin, Ruiping ;
Li, Weiwei ;
Li, Cuihong ;
Du, Chun ;
Veit, Clemens ;
Schleiermacher, Hans-Frieder ;
Andersson, Mattias ;
Bo, Zhishan ;
Liu, Zhengping ;
Inganas, Olle ;
Wuerfel, Uli ;
Zhang, Fengling .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (41) :14612-+
[43]   Design rules for donors in bulk-heterojunction solar cells -: Towards 10 % energy-conversion efficiency [J].
Scharber, MC ;
Wühlbacher, D ;
Koppe, M ;
Denk, P ;
Waldauf, C ;
Heeger, AJ ;
Brabec, CL .
ADVANCED MATERIALS, 2006, 18 (06) :789-+
[44]   Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics [J].
Schroeder, Bob C. ;
Ashraf, Raja Shahid ;
Thomas, Stuart ;
White, Andrew J. P. ;
Biniek, Laure ;
Nielsen, Christian B. ;
Zhang, Weimin ;
Huang, Zhenggang ;
Tuladhar, Pabitra Shakya ;
Watkins, Scott E. ;
Anthopoulos, Thomas D. ;
Durrant, James R. ;
McCulloch, Iain .
CHEMICAL COMMUNICATIONS, 2012, 48 (62) :7699-7701
[45]   Silaindacenodithiophene-Based Low Band Gap Polymers - The Effect of Fluorine Substitution on Device Performances and Film Morphologies [J].
Schroeder, Bob C. ;
Huang, Zhenggang ;
Ashraf, Raja Shahid ;
Smith, Jeremy ;
D'Angelo, Pasquale ;
Watkins, Scott E. ;
Anthopoulos, Thomas D. ;
Durrant, James R. ;
McCulloch, Iain .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (08) :1663-1670
[46]   Side Chain Engineering of Copolymers Based on Bithiazole and Benzodithiophene for Enhanced Photovoltaic Performance [J].
Shi, Qinqin ;
Fan, Haijun ;
Liu, Yao ;
Chen, Jianming ;
Ma, Lanchao ;
Hu, Wenping ;
Shuai, Zhigang ;
Li, Yongfang ;
Zhan, Xiaowei .
MACROMOLECULES, 2011, 44 (11) :4230-4240
[47]   Transition metal oxides as the buffer layer for polymer photovoltaic cells - art. no. 073508 [J].
Shrotriya, V ;
Li, G ;
Yao, Y ;
Chu, CW ;
Yang, Y .
APPLIED PHYSICS LETTERS, 2006, 88 (07)
[48]   High-performance polymer solar cells with a conjugated zwitterion by solution processing or thermal deposition as the electron-collection interlayer [J].
Sun, Kuan ;
Zhao, Baomin ;
Murugesan, Vajjiravel ;
Kumar, Amit ;
Zeng, Kaiyang ;
Subbiah, Jegadesan ;
Wong, Wallace W. H. ;
Jones, David J. ;
Ouyang, Jianyong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (45) :24155-24165
[49]   Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer [J].
Sun, Yanming ;
Seo, Jung Hwa ;
Takacs, Christopher J. ;
Seifter, Jason ;
Heeger, Alan J. .
ADVANCED MATERIALS, 2011, 23 (14) :1679-+
[50]   Donor Acceptor Conjugated Polymer Based on Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells [J].
Wang, Ming ;
Hu, Xiaowen ;
Liu, Peng ;
Li, Wei ;
Gong, Xiong ;
Huang, Fei ;
Cao, Yong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (25) :9638-9641