Light trapping enhancement of inverted polymer solar cells with a nanostructured scattering rear electrode

被引:38
作者
Cheng, Pan-Pan [1 ]
Zhou, Lei [1 ]
Li, Jie-Ai [1 ]
Li, Yan-Qing [1 ]
Lee, Shuit-Tong [1 ]
Tang, Jian-Xin [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
关键词
Polymer solar cell; Light trapping; Ag nanostructure; Surface plasmon; Backscattering; POWER CONVERSION EFFICIENCY; LOW-BANDGAP POLYMER; PHOTOVOLTAIC DEVICES; PLASMON; DESIGN; OXIDE;
D O I
10.1016/j.orgel.2013.05.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High performance inverted polymer solar cell is demonstrated by introducing a nanostructured backscattering rear electrode, which is fabricated by embedding silver nanoparticle (NP) arrays into the MoO3 hole extraction layer. As verified by characterizing and simulating the electrical and optical properties, such a nanostructured rear electrode can achieve an improved cell performance by maintaining simultaneously high open-circuit voltage and fill factor values, while providing excellent short-circuit current enhancement through efficient backscattering-induced light trapping. A careful optimization of the nanostructured rear electrode can result in polymer solar cells with an enhanced power conversion efficiency of 7.21%, as compared to 6.26% of the reference cell with a flat electrode. It is noteworthy that the method described here offers a convenient and scalable way for inexpensive and high-performance polymer solar cell designs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2158 / 2163
页数:6
相关论文
共 41 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[2]   Toward a rational design of poly(2,7-carbazole) derivatives for solar cells [J].
Blouin, Nicolas ;
Michaud, Alexandre ;
Gendron, David ;
Wakim, Salem ;
Blair, Emily ;
Neagu-Plesu, Rodica ;
Belletete, Michel ;
Durocher, Gilles ;
Tao, Ye ;
Leclerc, Mario .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (02) :732-742
[3]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Brabec, Christoph J. ;
Gowrisanker, Srinivas ;
Halls, Jonathan J. M. ;
Laird, Darin ;
Jia, Shijun ;
Williams, Shawn P. .
ADVANCED MATERIALS, 2010, 22 (34) :3839-3856
[4]   Spatial redistribution of the optical field intensity in inverted polymer solar cells [J].
Chen, Fang-Chung ;
Wu, Jyh-Lih ;
Hung, Yi .
APPLIED PHYSICS LETTERS, 2010, 96 (19)
[5]   Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles [J].
Chen, Fang-Chung ;
Wu, Jyh-Lih ;
Lee, Chia-Ling ;
Hong, Yi ;
Kuo, Chun-Hong ;
Huang, Michael H. .
APPLIED PHYSICS LETTERS, 2009, 95 (01)
[6]   Plasmonic backscattering enhancement for inverted polymer solar cells [J].
Cheng, Pan-Pan ;
Ma, Guo-Fu ;
Li, Jian ;
Xiao, Yan ;
Xu, Zai-Quan ;
Fan, Guo-Qiang ;
Li, Yan-Qing ;
Lee, Shuit-Tong ;
Tang, Jian-Xin .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (42) :22781-22787
[7]   n-Doping of thermally polymerizable fullerenes as an electron transporting layer for inverted polymer solar cells [J].
Cho, Namchul ;
Yip, Hin-Lap ;
Hau, Steven K. ;
Chen, Kung-Shih ;
Kim, Tae-Wook ;
Davies, Joshua A. ;
Zeigler, David F. ;
Jen, Alex K. -Y. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (19) :6956-6961
[8]   Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances [J].
Cocoyer, C ;
Rocha, L ;
Sicot, L ;
Geffroy, B ;
de Bettignies, R ;
Sentein, C ;
Fiorini-Debuisschert, C ;
Raimond, P .
APPLIED PHYSICS LETTERS, 2006, 88 (13)
[9]  
Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356]
[10]   Plasmonic-enhanced polymer solar cells incorporating solution-processable Au nanoparticle-adhered graphene oxide [J].
Fan, Guo-Qiang ;
Zhuo, Qi-Qi ;
Zhu, Jun-Jun ;
Xu, Zai-Quan ;
Cheng, Pan-Pan ;
Li, Yan-Qing ;
Sun, Xu-Hui ;
Lee, Shuit-Tong ;
Tang, Jian-Xin .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (31) :15614-15619