Plasmonic backscattering enhancement for inverted polymer solar cells

被引:25
作者
Cheng, Pan-Pan [1 ]
Ma, Guo-Fu [1 ]
Li, Jian [1 ]
Xiao, Yan [1 ]
Xu, Zai-Quan [1 ]
Fan, Guo-Qiang [1 ]
Li, Yan-Qing [1 ]
Lee, Shuit-Tong [1 ]
Tang, Jian-Xin [1 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
关键词
POWER CONVERSION EFFICIENCY; INTERNAL QUANTUM EFFICIENCY; PHOTOVOLTAIC DEVICES; ARCHITECTURE;
D O I
10.1039/c2jm34856j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The enhanced performance of inverted polymer solar cells enabled by a plasmonic backscattering effect is reported upon. To produce localized surface plasmons (LSPs) at the rear anode, thermally deposited Ag nanoparticles (NPs) are embedded in the MoO3 hole extraction layer. Upon optimizing the MoO3/Ag NPs/MoO3 sandwich structure, enhanced light harvesting is achieved via plasmonic backscattering into the photoactive layer of poly(3-hexylthiophene)/[6,6]-phenyl-C61 butyric acid methyl ester (P3HT:PCBM), resulting in an increase in photocurrent without sacrificing electrical properties, and similar to 20% enhancement in power conversion efficiency, of 4.32% Vs. 3.61% of the reference device. The performance improvement of the inverted PSCs is ascribed to the enhanced light absorption as a result of the light backscattering as well as the excitation of LSPs induced by Ag NPs embedded in the MoO3 layer. The present method provides a promising pathway for the fabrication of high-efficiency PSCs in an inexpensive and scalable way.
引用
收藏
页码:22781 / 22787
页数:7
相关论文
共 40 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[2]   Toward a rational design of poly(2,7-carbazole) derivatives for solar cells [J].
Blouin, Nicolas ;
Michaud, Alexandre ;
Gendron, David ;
Wakim, Salem ;
Blair, Emily ;
Neagu-Plesu, Rodica ;
Belletete, Michel ;
Durocher, Gilles ;
Tao, Ye ;
Leclerc, Mario .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (02) :732-742
[3]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Brabec, Christoph J. ;
Gowrisanker, Srinivas ;
Halls, Jonathan J. M. ;
Laird, Darin ;
Jia, Shijun ;
Williams, Shawn P. .
ADVANCED MATERIALS, 2010, 22 (34) :3839-3856
[4]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[5]   Spatial redistribution of the optical field intensity in inverted polymer solar cells [J].
Chen, Fang-Chung ;
Wu, Jyh-Lih ;
Hung, Yi .
APPLIED PHYSICS LETTERS, 2010, 96 (19)
[6]   Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles [J].
Chen, Fang-Chung ;
Wu, Jyh-Lih ;
Lee, Chia-Ling ;
Hong, Yi ;
Kuo, Chun-Hong ;
Huang, Michael H. .
APPLIED PHYSICS LETTERS, 2009, 95 (01)
[7]   n-Doping of thermally polymerizable fullerenes as an electron transporting layer for inverted polymer solar cells [J].
Cho, Namchul ;
Yip, Hin-Lap ;
Hau, Steven K. ;
Chen, Kung-Shih ;
Kim, Tae-Wook ;
Davies, Joshua A. ;
Zeigler, David F. ;
Jen, Alex K. -Y. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (19) :6956-6961
[8]   Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances [J].
Cocoyer, C ;
Rocha, L ;
Sicot, L ;
Geffroy, B ;
de Bettignies, R ;
Sentein, C ;
Fiorini-Debuisschert, C ;
Raimond, P .
APPLIED PHYSICS LETTERS, 2006, 88 (13)
[9]   Nanoparticle-induced light scattering for improved performance of quantum-well solar cells [J].
Derkacs, D. ;
Chen, W. V. ;
Matheu, P. M. ;
Lim, S. H. ;
Yu, P. K. L. ;
Yu, E. T. .
APPLIED PHYSICS LETTERS, 2008, 93 (09)
[10]  
Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356]