Impacts of Atomistic Coating on Thermal Conductivity of Germanium Nanowires

被引:93
作者
Chen, Jie [3 ,4 ]
Zhang, Gang [1 ,2 ]
Li, Baowen [3 ,4 ,5 ]
机构
[1] Peking Univ, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
[2] Peking Univ, Dept Elect, Beijing 100871, Peoples R China
[3] Natl Univ Singapore, Ctr Computat Sci & Engn, Dept Phys, Singapore 117542, Singapore
[4] Natl Univ Singapore, Graphene Res Ctr, Singapore 117542, Singapore
[5] Tongji Univ, Dept Phys, NUS Tongji Ctr Phonon & Thermal Energy Sci, Shanghai 200092, Peoples R China
关键词
Thermal conductivity; germanium nanowires; atomistic coating; molecular dynamics simulations; SILICON NANOWIRES; CORE-SHELL; SIMULATION; REDUCTION; PERFORMANCE; DYNAMICS;
D O I
10.1021/nl300208c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By using nonequilibrium molecular dynamics simulations, we demonstrated that thermal conductivity of germanium nanowires can be reduced more than 25% at room temperature by atomistic coating. There is a critical coating thickness beyond which thermal conductivity of the coated nanowire is larger than that of the host nanowire. The diameter-dependent critical coating thickness and minimum thermal conductivity are explored. Moreover, we found that interface roughness can induce further reduction of thermal conductivity in coated nanowires. From the vibrational eigenmode analysis, it is found that coating induces localization for low-frequency phonons, while interface roughness localizes the high-frequency phonons. Our results provide an available approach to tune thermal conductivity of nanowires by atomic layer coating.
引用
收藏
页码:2826 / 2832
页数:7
相关论文
共 42 条
[1]   Vibrations and thermal transport in nanocrystalline silicon [J].
Bodapati, Arun ;
Schelling, Patrick K. ;
Phillpot, Simon R. ;
Keblinski, Pawel .
PHYSICAL REVIEW B, 2006, 74 (24)
[2]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[3]   Breakdown of Fourier's law in nanotube thermal conductors [J].
Chang, C. W. ;
Okawa, D. ;
Garcia, H. ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[4]   A universal gauge for thermal conductivity of silicon nanowires with different cross sectional geometries [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (20)
[5]   Phonon coherent resonance and its effect on thermal transport in core-shell nanowires [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (10)
[6]   Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2010, 10 (10) :3978-3983
[7]   Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (07)
[8]   Tunable thermal conductivity of Si1-xGex nanowires [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
APPLIED PHYSICS LETTERS, 2009, 95 (07)
[9]   MOLECULAR-DYNAMICS SIMULATION OF AMORPHOUS-GERMANIUM [J].
DING, KJ ;
ANDERSEN, HC .
PHYSICAL REVIEW B, 1986, 34 (10) :6987-6991
[10]   Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
NANO LETTERS, 2010, 10 (03) :847-851