Active Plasmonics: Surface Plasmon Interaction With Optical Emitters

被引:27
作者
Ambati, Muralidhar [1 ]
Genov, Dentcho A. [1 ]
Oulton, Rupert F. [1 ]
Zhang, Xiang [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Ctr Scalable & Integrated Nanomfg, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Amplification; multiple quantum wells (MQWs); Purcell factor; spontaneous emission; surface plasmons;
D O I
10.1109/JSTQE.2008.931108
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The interaction between surface plasmons and optical emitters is fundamentally important for engineering applications, especially surface plasmon amplification and controlled spontaneous emission. We investigate these phenomena in an active planar metal-film system comprising InGaN/GaN quantum wells and a silver film. First, we present a detailed study of the propagation and amplification of surface plasmon polaritons (SPPs) at visible frequencies. In doing so, we propose a multiple quantum well structure and present quantum well gain coefficient calculations accounting for SPP polarization, line broadening due to exciton damping, and particularly, the effects of finite temperature. Second, we show that the emission of an optical emitter into various channels (surface plasmons, lossy surface waves, and free radiation) can be precisely controlled by strategically positioning the emitters. Together, these could provide a range of photonic devices (for example, surface plasmon amplifiers, nanolasers, nanoemitters, plasmonic cavities) and a foundation for the study of cavity quantum electrodynamics associated with surface plasmons.
引用
收藏
页码:1395 / 1403
页数:9
相关论文
共 63 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   Gain assisted surface plasmon polariton in quantum wells structures [J].
Alam, M. Z. ;
Meier, J. ;
Aitchison, J. S. ;
Mojahedi, M. .
OPTICS EXPRESS, 2007, 15 (01) :176-182
[3]  
Andrew P, 1997, J MOD OPTIC, V44, P395, DOI 10.1080/09500349708241879
[4]   EFFICIENT SOLUTION OF EIGENVALUE EQUATIONS OF OPTICAL WAVE-GUIDING STRUCTURES [J].
ANEMOGIANNIS, E ;
GLYTSIS, EN ;
GAYLORD, TK .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1994, 12 (12) :2080-2084
[5]   Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain [J].
Avrutsky, I .
PHYSICAL REVIEW B, 2004, 70 (15) :155416-1
[6]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[7]   Strong coupling between surface plasmons and excitons in an organic semiconductor [J].
Bellessa, J ;
Bonnand, C ;
Plenet, JC ;
Mugnier, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (03) :036404-1
[8]   Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems [J].
Bergman, DJ ;
Stockman, MI .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[9]   Characteristics of InGaN-AlGaN multiple-quantum-well laser diodes [J].
Bour, DP ;
Kneissl, M ;
Romano, LT ;
McCluskey, MD ;
Van de Walle, CG ;
Krusor, BS ;
Donaldson, RM ;
Walker, J ;
Dunnrowicz, CJ ;
Johnson, NM .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1998, 4 (03) :498-504
[10]   Waveguiding in surface plasmon polariton band gap structures [J].
Bozhevolnyi, SI ;
Erland, J ;
Leosson, K ;
Skovgaard, PMW ;
Hvam, JM .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3008-3011