Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian

被引:111
作者
Bender, CM [1 ]
Dunne, GV
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
关键词
D O I
10.1063/1.532991
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A precise calculation of the ground-state energy of the complex PT-symmetric Hamiltonian H = p(2) + 1/4x(2) + i lambda x(3), is performed using high-order Rayleigh-Schrodinger perturbation theory. The energy spectrum of this Hamiltonian has recently been shown to be real using numerical methods. Here we present convincing numerical evidence that the Rayleigh-Schrodinger perturbation series is Borel summable, and show that Pade summation provides excellent agreement with the real energy spectrum. Pade analysis provides strong numerical evidence that the once-subtracted ground-state energy considered as a function of lambda(2) is a Stieltjes function. The analyticity properties of this Stieltjes function lead to a dispersion relation that can be used to compute the imaginary part of the energy for the related real but unstable Hamiltonian H = p(2) + 1/4 x(2) - epsilon x(3). (C) 1999 American Institute of Physics. [S0022-2488(99)01810-1].
引用
收藏
页码:4616 / 4621
页数:6
相关论文
共 25 条
[1]  
[Anonymous], 1990, LARGE ORDER BEHAV PE
[2]   Complex periodic potentials with real band spectra [J].
Bender, CM ;
Dunne, GV ;
Meisinger, PN .
PHYSICS LETTERS A, 1999, 252 (05) :272-276
[3]   LARGE-ORDER BEHAVIOR OF PERTURBATION THEORY [J].
BENDER, CM ;
WU, TS .
PHYSICAL REVIEW LETTERS, 1971, 27 (07) :461-&
[4]   Model of supersymmetric quantum field theory with broken parity symmetry [J].
Bender, CM ;
Milton, KA .
PHYSICAL REVIEW D, 1998, 57 (06) :3595-3608
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   Quasi-exactly solvable quartic potential [J].
Bender, CM ;
Boettcher, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (14) :L273-L277
[7]   ANHARMONIC OSCILLATOR .2. STUDY OF PERTURBATION-THEORY IN LARGE ORDER [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW D, 1973, 7 (06) :1620-1636
[8]   Nonperturbative calculation of symmetry breaking in quantum field theory [J].
Bender, CM ;
Milton, KA .
PHYSICAL REVIEW D, 1997, 55 (06) :R3255-R3259
[9]  
BENDER CM, 1978, ADV MATH METHODS SCI, pCH8
[10]  
Bessis D., COMMUNICATION