Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian

被引:111
作者
Bender, CM [1 ]
Dunne, GV
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
关键词
D O I
10.1063/1.532991
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A precise calculation of the ground-state energy of the complex PT-symmetric Hamiltonian H = p(2) + 1/4x(2) + i lambda x(3), is performed using high-order Rayleigh-Schrodinger perturbation theory. The energy spectrum of this Hamiltonian has recently been shown to be real using numerical methods. Here we present convincing numerical evidence that the Rayleigh-Schrodinger perturbation series is Borel summable, and show that Pade summation provides excellent agreement with the real energy spectrum. Pade analysis provides strong numerical evidence that the once-subtracted ground-state energy considered as a function of lambda(2) is a Stieltjes function. The analyticity properties of this Stieltjes function lead to a dispersion relation that can be used to compute the imaginary part of the energy for the related real but unstable Hamiltonian H = p(2) + 1/4 x(2) - epsilon x(3). (C) 1999 American Institute of Physics. [S0022-2488(99)01810-1].
引用
收藏
页码:4616 / 4621
页数:6
相关论文
共 25 条
[11]  
Coleman S., 1985, ASPECTS SYMMETRY
[12]   STRING PERTURBATION-THEORY DIVERGES [J].
GROSS, DJ ;
PERIWAL, V .
PHYSICAL REVIEW LETTERS, 1988, 60 (21) :2105-2108
[13]  
Hardy G. H., 1949, Divergent Series
[14]   Localization transitions in non-Hermitian quantum mechanics [J].
Hatano, N ;
Nelson, DR .
PHYSICAL REVIEW LETTERS, 1996, 77 (03) :570-573
[15]   Vortex pinning and non-Hermitian quantum mechanics [J].
Hatano, N ;
Nelson, DR .
PHYSICAL REVIEW B, 1997, 56 (14) :8651-8673
[16]   STARK EFFECT REVISITED [J].
HERBST, IW ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1978, 41 (02) :67-69
[17]  
HOLLOWOOD TJ, 1992, NUCL PHYS B, V386, P166
[18]  
HURST CA, 1952, P CAMBRIDGE PHILOS S, V48, P635
[19]   Decay rates of metastable states in cubic potential by variational perturbation theory [J].
Kleinert, H ;
Mustapic, I .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (24) :4383-4399
[20]   THEORY OF CONDENSATION POINT [J].
LANGER, JS .
ANNALS OF PHYSICS, 1967, 41 (01) :108-+