Computational evidence for hundreds of non-conserved plant microRNAs

被引:57
作者
Lindow, M [1 ]
Krogh, A [1 ]
机构
[1] Univ Copenhagen, Inst Mol Biol, Bioinformat Ctr, DK-1168 Copenhagen, Denmark
关键词
D O I
10.1186/1471-2164-6-119
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: MicroRNAs (miRNA) are small ( 20 - 25 nt) non-coding RNA molecules that regulate gene expression through interaction with mRNA in plants and metazoans. A few hundred miRNAs are known or predicted, and most of those are evolutionarily conserved. In general plant miRNA are different from their animal counterpart: most plant miRNAs show near perfect complementarity to their targets. Exploiting this complementarity we have developed a method for identification plant miRNAs that does not rely on phylogenetic conservation. Results: Using the presumed targets for the known miRNA as positive controls, we list and filter all segments of the genome of length similar to 20 that are complementary to a target mRNA-transcript. From the positive control we recover 41 ( of 92 possible) of the already known miRNA-genes ( representing 14 of 16 families) with only four false positives. Applying the procedure to find possible new miRNAs targeting any annotated mRNA, we predict of 592 new miRNA genes, many of which are not conserved in other plant genomes. A subset of our predicted miRNAs is additionally supported by having more than one target that are not homologues. Conclusion: These results indicate that it is possible to reliably predict miRNA-genes without using genome comparisons. Furthermore it suggests that the number of plant miRNAs have been underestimated and points to the existence of recently evolved miRNAs in Arabidopsis.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Computational prediction of miRNAs in Arabidopsis thaliana [J].
Adai, A ;
Johnson, C ;
Mlotshwa, S ;
Archer-Evans, S ;
Manocha, V ;
Vance, V ;
Sundaresan, V .
GENOME RESEARCH, 2005, 15 (01) :78-91
[2]   Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana [J].
Allen, E ;
Xie, ZX ;
Gustafson, AM ;
Sung, GH ;
Spatafora, JW ;
Carrington, JC .
NATURE GENETICS, 2004, 36 (12) :1282-1290
[3]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[4]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[5]   RNA silencing in plants [J].
Baulcombe, D .
NATURE, 2004, 431 (7006) :356-363
[6]   Identification of hundreds of conserved and nonconserved human microRNAs [J].
Bentwich, I ;
Avniel, A ;
Karov, Y ;
Aharonov, R ;
Gilad, S ;
Barad, O ;
Barzilai, A ;
Einat, P ;
Einav, U ;
Meiri, E ;
Sharon, E ;
Spector, Y ;
Bentwich, Z .
NATURE GENETICS, 2005, 37 (07) :766-770
[7]   Functional annotation of the Arabidopsis genome using controlled vocabularies [J].
Berardini, TZ ;
Mundodi, S ;
Reiser, L ;
Huala, E ;
Garcia-Hernandez, M ;
Zhang, PF ;
Mueller, LA ;
Yoon, J ;
Doyle, A ;
Lander, G ;
Moseyko, N ;
Yoo, D ;
Xu, I ;
Zoeckler, B ;
Montoya, M ;
Miller, N ;
Weems, D ;
Rhee, SY .
PLANT PHYSIOLOGY, 2004, 135 (02) :745-755
[8]   Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) :11511-11516
[9]   Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution [J].
Cheng, J ;
Kapranov, P ;
Drenkow, J ;
Dike, S ;
Brubaker, S ;
Patel, S ;
Long, J ;
Stern, D ;
Tammana, H ;
Helt, G ;
Sementchenko, V ;
Piccolboni, A ;
Bekiranov, S ;
Bailey, DK ;
Ganesh, M ;
Ghosh, S ;
Bell, I ;
Gerhard, DS ;
Gingeras, TR .
SCIENCE, 2005, 308 (5725) :1149-1154
[10]   Specificity of microRNA target selection in translational repression [J].
Doench, JG ;
Sharp, PA .
GENES & DEVELOPMENT, 2004, 18 (05) :504-511