Batteries used to power implantable biomedical devices

被引:242
作者
Bock, David C. [1 ]
Marschilok, Amy C. [1 ,2 ,3 ]
Takeuchi, Kenneth J. [1 ]
Takeuchi, Esther S. [1 ,2 ,3 ,4 ]
机构
[1] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[4] SUNY Buffalo, Dept Biomed Engn, Buffalo, NY 14260 USA
基金
美国国家卫生研究院;
关键词
Implantable medical batteries; Silver vanadium oxide; Carbon monofluoride; Lithium iodine; Lithium manganese oxide; SILVER VANADIUM-OXIDE; MANGANESE-DIOXIDE; DISCHARGE CHARACTERISTICS; LITHIUM BATTERIES; ELECTROCHEMICAL PROPERTIES; OVERCHARGE REACTION; CATHODE MATERIAL; LI/CFX; ELECTROLYTE; MECHANISM;
D O I
10.1016/j.electacta.2012.03.057
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 97 条
[1]   Fluoride based electrode materials for advanced energy storage devices [J].
Amatucci, Glenn G. ;
Pereira, Nathalie .
JOURNAL OF FLUORINE CHEMISTRY, 2007, 128 (04) :243-262
[2]  
[Anonymous], 2002, HDB BATTERIES
[3]   RUTILE-TYPE COMPOUNDS .5. REFINEMENT OF MNO2 AND MGF2 [J].
BAUR, WH .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1976, 32 (JUL15) :2200-2204
[4]   New manganese dioxides for lithium batteries [J].
Bowden, W. ;
Bofinger, T. ;
Zhang, F. ;
Iltchev, N. ;
Sirotina, R. ;
Paik, Y. ;
Chen, H. ;
Grey, C. ;
Hackney, S. .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :609-615
[5]   Batteries, 1977 to 2002 [J].
Brodd, RJ ;
Bullock, KR ;
Leising, RA ;
Middaugh, RL ;
Miller, JR ;
Takeuchi, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (03) :K1-K11
[6]   Facile preparation of Ag2V4O11 nanoparticles via low-temperature molten salt synthesis method [J].
Cao, Xiaoyu ;
Xie, Lingling ;
Zhan, Hui ;
Zhou, Yunhong .
INORGANIC MATERIALS, 2008, 44 (08) :886-889
[7]   Hybrid cathode lithium batteries for implantable medical applications [J].
Chen, Kaimin ;
Merritt, Donald R. ;
Howard, William G. ;
Schmidt, Craig L. ;
Skarstad, Paul A. .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :837-840
[8]   Transition metal vanadium oxides and vanadate materials for lithium batteries [J].
Cheng, Fangyi ;
Chen, Jun .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :9841-9848
[9]   Modeling and characterization of the resistance of lithium/SVO batteries for implantable cardioverter defibrillators [J].
Crespi, A ;
Schmidt, C ;
Norton, J ;
Chen, KM ;
Skarstad, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (01) :A30-A37
[10]   Evolution of power sources for implantable cardioverter defibrillators [J].
Crespi, AM ;
Somdahl, SK ;
Schmidt, CL ;
Skarstad, PM .
JOURNAL OF POWER SOURCES, 2001, 96 (01) :33-38