Control of post-disruption runaway electron beams in DIII-D

被引:44
作者
Eidietis, N. W. [1 ]
Commaux, N. [2 ]
Hollmann, E. M. [3 ]
Humphreys, D. A. [1 ]
Jernigan, T. C. [2 ]
Moyer, R. A. [3 ]
Strait, E. J. [1 ]
VanZeeland, M. A. [1 ]
Wesley, J. C. [1 ]
Yu, J. H. [3 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
MAJOR DISRUPTIONS; GENERATION; TERMINATION; DESIGN;
D O I
10.1063/1.3695000
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent experiments in the DIII-D tokamak have demonstrated real-time control and dissipation of post-disruption runaway electron (RE) beams. In the event that disruption avoidance, control, and mitigation schemes fail to avoid or suppress RE generation, active control of the RE beam may be an important line of defense to prevent the rapid, localized deposition of RE beam energy onto vulnerable vessel sections. During and immediately after the current quench, excessive radial compression of the runaway beams is avoided by a combination of techniques, improving the likelihood of the beams surviving this dynamic period without a fast termination. Once stabilized, the runaway beams are held in a steady state (out to the ohmic flux limit) with the application of active plasma current and position controls. Beam interaction with the vessel wall is minimized by avoiding distinct thresholds for enhanced wall interaction at small and large radii, corresponding to inner wall and outer limiter interaction, respectively. Staying within the "safe zone" between those radial thresholds allows for the sustainment of long-lived, quiescent runaway beams. The total beam energy and runaway electron population are then dissipated gradually by a controlled ramp-down of the runaway current. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695000]
引用
收藏
页数:9
相关论文
共 34 条
[1]   Review of particle physics [J].
Amsler, C. ;
Doser, M. ;
Antonelli, M. ;
Asner, D. M. ;
Babu, K. S. ;
Baer, H. ;
Band, H. R. ;
Barnett, R. M. ;
Bergren, E. ;
Beringer, J. ;
Bernardi, G. ;
Bertl, W. ;
Bichsel, H. ;
Biebel, O. ;
Bloch, P. ;
Blucher, E. ;
Blusk, S. ;
Cahn, R. N. ;
Carena, M. ;
Caso, C. ;
Cecccci, A. ;
Chakraborty, D. ;
Chen, M. -C. ;
Chivukula, R. S. ;
Cowan, G. ;
Dahl, O. ;
D'Ambrosio, G. ;
Damour, T. ;
de Gouvea, A. ;
DeGrand, T. ;
Dobrescu, B. ;
Drees, M. ;
Edwards, D. A. ;
Eidelman, S. ;
Elvira, V. D. ;
Erler, J. ;
Ezhela, V. V. ;
Feng, J. L. ;
Fetscher, W. ;
Fields, B. D. ;
Foster, B. ;
Gaisser, T. K. ;
Garren, L. ;
Gerber, H. -J. ;
Gerbier, G. ;
Gherghetta, T. ;
Giudice, G. F. ;
Goodman, M. ;
Grab, C. ;
Gritsan, A. V. .
PHYSICS LETTERS B, 2008, 667 (1-5) :1-+
[2]   RELATIVISTIC LIMITATIONS ON RUNAWAY ELECTRONS [J].
CONNOR, JW ;
HASTIE, RJ .
NUCLEAR FUSION, 1975, 15 (03) :415-424
[3]   ELECTRON AND ION RUNAWAY IN A FULLY IONIZED GAS .1. [J].
DREICER, H .
PHYSICAL REVIEW, 1959, 115 (02) :238-249
[4]  
Evans T. E., 1998, P 17 IAEA FUS EN C Y, V3, P847
[5]   Real time equilibrium reconstruction for tokamak discharge control [J].
Ferron, JR ;
Walker, ML ;
Lag, LL ;
St John, HE ;
Humphreys, DA ;
Leuer, JA .
NUCLEAR FUSION, 1998, 38 (07) :1055-1066
[6]   Magnetic field threshold for runaway generation in tokamak disruptions [J].
Fulop, T. ;
Smith, H. M. ;
Pokol, G. .
PHYSICS OF PLASMAS, 2009, 16 (02)
[7]   GENERATION AND LOSS OF RUNAWAY ELECTRONS FOLLOWING DISRUPTIONS IN JET [J].
GILL, RD .
NUCLEAR FUSION, 1993, 33 (11) :1613-1625
[8]   Direct observations of runaway electrons during disruptions in the JET tokamak [J].
Gill, RD ;
Alper, B ;
Edwards, AW ;
Ingesson, LC ;
Johnson, MF ;
Ward, DJ .
NUCLEAR FUSION, 2000, 40 (02) :163-174
[9]   Behaviour of disruption generated runaways in JET [J].
Gill, RD ;
Alper, B ;
de Baar, M ;
Hender, TC ;
Johnson, MF ;
Riccardo, V .
NUCLEAR FUSION, 2002, 42 (08) :1039-1044
[10]   Phase-space dynamics of runaway electrons in tokamaks [J].
Guan, Xiaoyin ;
Qin, Hong ;
Fisch, Nathaniel J. .
PHYSICS OF PLASMAS, 2010, 17 (09)