Blended isogeometric shells

被引:131
作者
Benson, D. J. [1 ]
Hartmann, S. [2 ]
Bazilevs, Y. [1 ]
Hsu, M. -C. [3 ]
Hughes, T. J. R. [3 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] DYNAmore GmbH, D-70565 Stuttgart, Germany
[3] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
Isogeometric analysis; NURBS; Shells; Rotation-free; Nonlinear; ELEMENT; FORMULATION; INTEGRATION; ALGORITHM; DYNAMICS;
D O I
10.1016/j.cma.2012.11.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a new isogeometric shell formulation that blends Kirchhoff-Love theory with Reissner-Mindlin theory. This enables us to reduce the size of equation systems by eliminating rotational degrees of freedom while simultaneously providing a general and effective treatment of kinematic constraints engendered by shell intersections, folds, boundary conditions, the merging of NURBS patches, etc. We illustrate the blended theory's performance on a series of test problems. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 34 条
[21]   NON-LINEAR FINITE-ELEMENT ANALYSIS OF SHELLS .1. 3-DIMENSIONAL SHELLS [J].
HUGHES, TJR ;
LIU, WK .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 26 (03) :331-362
[22]   Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement [J].
Hughes, TJR ;
Cottrell, JA ;
Bazilevs, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (39-41) :4135-4195
[23]  
Hughes TJR., 2000, The finite element method: linear static and dynamic finite element analysis
[24]   The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches [J].
Kiendl, J. ;
Bazilevs, Y. ;
Hsu, M. -C. ;
Wuechner, R. ;
Bletzinger, K. -U. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (37-40) :2403-2416
[25]   Isogeometric shell analysis with Kirchhoff-Love elements [J].
Kiendl, J. ;
Bletzinger, K-U. ;
Linhard, J. ;
Wuechner, R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (49-52) :3902-3914
[26]   Shear-flexible subdivision shells [J].
Long, Quan ;
Bornemann, P. Burkhard ;
Cirak, Fehmi .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (13) :1549-1577
[27]   Advances in the formulation of the rotation-free basic shell triangle [J].
Oñate, E ;
Flores, FG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (21-24) :2406-2443
[28]  
Piegl L., 2012, The NURBS Book
[29]  
Rogers D. F., 2001, An Introduction to NURBS: With Historical Perspective
[30]   An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry [J].
Schillinger, Dominik ;
Rank, Ernst .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (47-48) :3358-3380