Biased continuous time random walks between parallel plates

被引:39
作者
Compte, A [1 ]
Metzler, R [1 ]
Camacho, J [1 ]
机构
[1] UNIV ULM, DEPT MATH PHYS, D-89069 ULM, GERMANY
关键词
D O I
10.1103/PhysRevE.56.1445
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The generalized scheme of continuous time random walks in moving fluids [A. Compte, Phys. Rev. E 55, 6821 (1997)] is applied to particles diffusing between parallel plates whose jumps are biased by a nonhomogeneous longitudinal velocity field. We observe that when the statistics governing diffusion is Brownian the results are those of Taylor dispersion, i.e., enhanced longitudinal diffusion due to the coupling of the transverse diffusion of the solute and the unidirectional velocity field. However, for Levy flights with infinite mean waiting time we observe an anomalous dispersion approaching ballistic diffusion. We interpret this behavior as a consequence of the coupling between the flow and the waiting time statistics.
引用
收藏
页码:1445 / 1454
页数:10
相关论文
共 45 条
[11]  
CHUKBAR KV, 1996, SOV PHYS JETP, V82, P719
[12]  
CHUKBAR KV, 1995, SOV PHYS JETP, V81, P1025
[13]   Stochastic foundations of fractional dynamics [J].
Compte, A .
PHYSICAL REVIEW E, 1996, 53 (04) :4191-4193
[14]   Anomalous diffusion in linear shear flows [J].
Compte, A ;
Jou, D ;
Katayama, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04) :1023-1030
[15]  
COMPTGE A, 1994, PHYS REV E, V55, P6821
[16]  
Erdelyi A, 1955, HIGHER TRANSCENDENTA, V3
[17]   DIFFUSION OF BROWNIAN PARTICLES IN SHEAR FLOWS [J].
FOISTER, RT ;
VANDEVEN, TGM .
JOURNAL OF FLUID MECHANICS, 1980, 96 (JAN) :105-132
[18]   ON THE FOUNDATIONS OF GENERALIZED TAYLOR DISPERSION THEORY [J].
FRANKEL, I ;
BRENNER, H .
JOURNAL OF FLUID MECHANICS, 1989, 204 :97-119
[19]   FRACTIONAL MASTER-EQUATIONS AND FRACTAL TIME RANDOM-WALKS [J].
HILFER, R ;
ANTON, L .
PHYSICAL REVIEW E, 1995, 51 (02) :R848-R851
[20]   DERIVATION OF THE CONTINUOUS-TIME RANDOM-WALK EQUATION [J].
KLAFTER, J ;
SILBEY, R .
PHYSICAL REVIEW LETTERS, 1980, 44 (02) :55-58