GraphXNET- Chest X-Ray Classification Under Extreme Minimal Supervision

被引:37
作者
Aviles-Rivero, Angelica I. [1 ,2 ]
Papadakis, Nicolas [3 ]
Li, Ruoteng [4 ]
Sellars, Philip [1 ,2 ]
Fan, Qingnan [5 ]
Tan, Robby T. [4 ,6 ]
Schoenlieb, Carola-Bibiane [1 ,2 ]
机构
[1] Univ Cambridge, Fac Math, DPMMS, Cambridge, England
[2] Univ Cambridge, Fac Math, DAMPT, Cambridge, England
[3] Univ Bordeaux, CNRS, Talence, France
[4] Natl Univ Singapore, Singapore, Singapore
[5] Stanford Univ, Stanford, CA 94305 USA
[6] Yale NUS Coll, Singapore, Singapore
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI | 2019年 / 11769卷
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
Semi-supervised learning; Classification; Chest X-Ray; Graphs; Transductive learning;
D O I
10.1007/978-3-030-32226-7_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of classifying X-ray data is a problem of both theoretical and clinical interest. Whilst supervised deep learning methods rely upon huge amounts of labelled data, the critical problem of achieving a good classification accuracy when an extremely small amount of labelled data is available has yet to be tackled. In this work, we introduce a novel semi-supervised framework for X-ray classification which is based on a graph-based optimisation model. To the best of our knowledge, this is the first method that exploits graph-based semi-supervised learning for X-ray data classification. Furthermore, we introduce a new multi-class classification functional with carefully selected class priors which allows for a smooth solution that strengthens the synergy between the limited number of labels and the huge amount of unlabelled data. We demonstrate, through a set of numerical and visual experiments, that our method produces highly competitive results on the ChestX-ray14 data set whilst drastically reducing the need for annotated data.
引用
收藏
页码:504 / 512
页数:9
相关论文
共 20 条
[11]  
Folio LR, 2012, CHEST IMAGING: AN ALGORITHMIC APPROACH TO LEARNING, P1, DOI 10.1007/978-1-4614-1317-2
[12]   Medical Image Retrieval Using Multi-graph Learning for MCI Diagnostic Assistance [J].
Gao, Yue ;
Adeli-M, Ehsan ;
Kim, Minjeong ;
Giannakopoulos, Panteleimon ;
Haller, Sven ;
Shen, Dinggang .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 :86-93
[13]  
He K., 2016, IEEE C COMPUT VIS PA, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
[14]   Medical Image Data and Datasets in the Era of Machine Learning-Whitepaper from the 2016 C-MIMI Meeting Dataset Session [J].
Kohli, Marc D. ;
Summers, Ronald M. ;
Geis, J. Raymond .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :392-399
[15]   Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects [J].
Moradi, Elaheh ;
Pepe, Antonietta ;
Gaser, Christian ;
Huttunen, Heikki ;
Tohka, Jussi .
NEUROIMAGE, 2015, 104 :398-412
[16]  
Toriwaki J., 1973, Computer Graphics and Image Processing, V2, P252, DOI DOI 10.1016/0146-664X(73)90005-1
[17]   Spatiotemporal Pyramid Network for Video Action Recognition [J].
Wang, Yunbo ;
Long, Mingsheng ;
Wang, Jianmin ;
Yu, Philip S. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2097-2106
[18]  
Wang Zhengxia, 2016, Med Image Comput Comput Assist Interv, V9900, P291, DOI 10.1007/978-3-319-46720-7_34
[19]  
Yao L., 2018, ARXIV180307703
[20]  
Zhu X, 2003, ICML