The Boltzmann-Grad limit for a one-dimensional Boltzmann equation in a stationary state

被引:8
作者
Caprino, S [1 ]
Pulvirenti, M [1 ]
机构
[1] UNIV ROMA LA SAPIENZA,DIPARTIMENTO MATEMAT,I-00185 ROME,ITALY
关键词
D O I
10.1007/BF02102430
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we consider a one-dimensional model of interacting particles in a bounded interval with (possibly not homogeneous) diffusive boundary conditions. We prove that, when the number of particles N goes to infinity and the interaction is suitably rescaled (the Boltzmann-Grad limit), the one-particle distribution function of the unique invariant measure for the particle system, converges to the unique solution of the Boltzmann equation of the model, provided that the mean free path is sufficiently large.
引用
收藏
页码:63 / 81
页数:19
相关论文
共 12 条
[1]  
[Anonymous], 1994, MATH THEORY DILUTE G
[2]   MEASURE SOLUTIONS OF THE STEADY BOLTZMANN-EQUATION IN A SLAB [J].
ARKERYD, L ;
CERCIGNANI, C ;
ILLNER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :285-296
[3]  
ARKERYD L, 1994, IN PRESS COMPACTNESS
[4]  
ARKERYD L, 1992, LECT NOTES MATH, V1551
[5]  
ARKERYD L, 1992, MATH METH APPL SCI, V16, P739
[6]   A DERIVATION OF THE BROADWELL EQUATION [J].
CAPRINO, S ;
DEMASI, A ;
PRESUTTI, E ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (03) :443-465
[7]   A CLUSTER-EXPANSION APPROACH TO A ONE-DIMENSIONAL BOLTZMANN-EQUATION - A VALIDITY RESULT [J].
CAPRINO, S ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 166 (03) :603-631
[8]  
De Masi A., 1991, LECT NOTES MATH, V1501
[9]  
ESPOSITO R, 1994, IN PRESS J STAT PHYS
[10]  
GOLDSTEIN S, 1981, C MATH SOC J BOL, V27