Evolutionary Diversification of the Sm Family of RNA-Associated Proteins

被引:43
作者
Scofield, Douglas G. [1 ]
Lynch, Michael [1 ]
机构
[1] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
Sm protein; RNA processing; snRNP; multimeric proteins; trans-splicing; spliceosome;
D O I
10.1093/molbev/msn175
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Sm family of proteins is closely associated with RNA metabolism throughout all life. These proteins form homomorphic and heteromorphic rings consisting of six or seven subunits with a characteristic central pore, the presence of which is critical for binding U-rich regions of single-stranded RNA. Eubacteria and Archaea typically carry one or two forms of Sm proteins and assemble one homomorphic ring per Sm protein. Eukaryotes typically carry 16 or more Sm proteins that assemble to form heteromorphic rings which lie at the center of a number of critical RNA-associated small nuclear ribonucleoproteins (snRNPs). High Sm protein diversity and heteromorphic Sm rings are features stretching back to the origin of eukaryotes; very deep phylogenetic divisions among existing Sm proteins indicate simultaneous evolution across essentially all existing eukaryotic life. Two basic forms of heteromorphic Sm rings are found in eukaryotes. Fixed Sm rings are highly stable and static and are assembled around an RNA cofactor. Flexible Sm rings also stabilize and chaperone RNA but assemble in the absence of an RNA substrate and, more significantly, associate with and dissociate from RNA substrates more freely than fixed rings. This suggests that the conformation of flexible Sm rings might be modified in some specific manner to facilitate association and dissociation with RNA. Diversification of eukaryotic Sm proteins may have been initiated by gene transfers and/or genome clashes that accompanied the origin of the eukaryotic cell itself, with further diversification driven by a greater need for steric specificity within increasingly complex snRNPs.
引用
收藏
页码:2255 / 2267
页数:13
相关论文
共 120 条
[1]   A doughnut-shaped heteromer of human Sm-like proteins binds to the 3′-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro [J].
Achsel, T ;
Brahms, H ;
Kastner, B ;
Bachi, A ;
Wilm, M ;
Lührmann, R .
EMBO JOURNAL, 1999, 18 (20) :5789-5802
[2]   The Sm domain is an ancient RNA-binding motif with oligo(U) specificity [J].
Achsel, T ;
Stark, H ;
Lührmann, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) :3685-3689
[3]   Structural and functional analysis of ataxin-2 and ataxin-3 [J].
Albrecht, M ;
Golatta, M ;
Wüllner, U ;
Lengauer, T .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2004, 271 (15) :3155-3170
[4]   Novel Sm-like proteins with long C-terminal tails and associated methyltransferases [J].
Albrecht, M ;
Lengauer, T .
FEBS LETTERS, 2004, 569 (1-3) :18-26
[5]  
ALTSCHUL SF, 1997, NUCLEIC ACIDS RES, V25, P3402
[6]   Comparative genomics and evolution of proteins involved in RNA metabolism [J].
Anantharaman, V ;
Koonin, EV ;
Aravind, L .
NUCLEIC ACIDS RESEARCH, 2002, 30 (07) :1427-1464
[7]   Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability [J].
Anantharaman, V ;
Aravind, L .
BMC GENOMICS, 2004, 5 (1)
[8]   Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion [J].
Barbosa-Morais, NL ;
Carmo-Fonseca, M ;
Aparício, S .
GENOME RESEARCH, 2006, 16 (01) :66-77
[9]   Lsm proteins bind and stabilize RNAs containing 5′ poly(A) tracts [J].
Bergman, Naomi ;
Moraes, Karen C. M. ;
Anderson, John R. ;
Zaric, Bozidarka ;
Kambach, Christian ;
Schneider, Robert J. ;
Wilusz, Carol J. ;
Wilusz, Jeffrey .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2007, 14 (09) :824-831
[10]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242