Printed Sub-100 nm Polymer-Derived Ceramic Structures

被引:18
作者
Duong, Binh [1 ]
Gangopadhyay, Palash [2 ]
Brent, Josh [2 ]
Seraphin, Supapan [3 ]
Loutfy, Raouf O. [4 ]
Peyghambarian, Nasser [2 ]
Thomas, Jayan [1 ,5 ,6 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA
[4] Mat & Electrochem Res Corp, Tucson, AZ 85706 USA
[5] Univ Cent Florida, CREOL, Coll Opt & Photon, Orlando, FL 32826 USA
[6] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32826 USA
基金
美国国家科学基金会;
关键词
nanostructured ceramics; nanoimprinting; sub-100 nm ceramic structures; polymer-derived ceramics; SNAP technique; polyureasilazane; PRECERAMIC POLYMERS; NANOSTRUCTURES; FABRICATION; FILMS; SICN;
D O I
10.1021/am400587z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We proposed an unconventional fabrication technique called spin-on nanoprinting (SNAP) to generate and transfer sub-100 nm preceramic polymer patterns onto flexible and rigid substrates. The dimensions of printed nanostructures are almost the same as those of the mold, since the ceramic precursor used is a liquid. The printed patterns can be used as a replica for printing second-generation structures using other polymeric materials or they can be further converted to desirable ceramic structures, which are very attractive for high-temperature and harsh environment applications. SNAP is an inexpensive parallel process and requires no special equipment for operation.
引用
收藏
页码:3894 / 3899
页数:6
相关论文
共 42 条
[1]   Rapid Nanoimprinting of Silk Fibroin Films for Biophotonic Applications [J].
Amsden, Jason J. ;
Domachuk, Peter ;
Gopinath, Ashwin ;
White, Robert D. ;
Dal Negro, Luca ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. .
ADVANCED MATERIALS, 2010, 22 (15) :1746-+
[2]   Re-configurable fluid circuits by PDMS elastomer micromachining [J].
Armani, D ;
Liu, C ;
Aluru, N .
MEMS '99: TWELFTH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 1999, :222-227
[3]   Polymer self assembly in semiconductor microelectronics [J].
Black, C. T. ;
Ruiz, R. ;
Breyta, G. ;
Cheng, J. Y. ;
Colburn, M. E. ;
Guarini, K. W. ;
Kim, H.-C. ;
Zhang, Y. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2007, 51 (05) :605-633
[4]   IMPRINT OF SUB-25 NM VIAS AND TRENCHES IN POLYMERS [J].
CHOU, SY ;
KRAUSS, PR ;
RENSTROM, PJ .
APPLIED PHYSICS LETTERS, 1995, 67 (21) :3114-3116
[5]   Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics [J].
Colombo, Paolo ;
Mera, Gabriela ;
Riedel, Ralf ;
Soraru, Gian Domenico .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2010, 93 (07) :1805-1837
[6]   Fabrication process for ultra high aspect ratio polysilazane-derived MEMS [J].
Cross, T ;
Liew, LA ;
Bright, VM ;
Dunn, ML ;
Daily, JW ;
Raj, R .
FIFTEENTH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2002, :172-175
[7]   Stability of molded polydimethylsiloxane microstructures [J].
Delamarche, E ;
Schmid, H ;
Michel, B ;
Biebuyck, H .
ADVANCED MATERIALS, 1997, 9 (09) :741-746
[8]  
Fang F., 2006, HDB TECHNIQUES APPL, V1, P678
[9]   ZnS Nanostructure Arrays: A Developing Material Star [J].
Fang, Xiaosheng ;
Wu, Limin ;
Hu, Linfeng .
ADVANCED MATERIALS, 2011, 23 (05) :585-598
[10]  
Fukuyama S., 1999, U.S. Patent, Patent No. [5,770,260, 5770260]