Structural biology of cellular machines

被引:35
作者
Chiu, W [1 ]
Baker, ML
Almo, SC
机构
[1] Baylor Coll Med, Natl Ctr Macromol Imaging, Houston, TX 77030 USA
[2] Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA
[3] Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA
关键词
D O I
10.1016/j.tcb.2006.01.002
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Multi-component macromolecular machines contribute to all essential biological processes, from cell motility and signal transduction to information storage and processing. Structural analysis of assemblies at atomic resolution is emerging as the field of structural cell biology. Several recent studies, including those focused on the ribosome, the acrosomal bundle and bacterial flagella, have demonstrated the ability of a hybrid approach that combines imaging, crystallography and computational tools to generate testable atomic models of fundamental biological machines. A complete understanding of cellular and systems biology will require the detailed structural understanding of hundreds of biological machines. The realization of this goal demands a concerted effort to develop and apply new strategies for the systematic identification, isolation, structural characterization and mechanistic analysis of multicomponent assemblies at all resolution ranges. The establishment of a database describing the structural and dynamic properties of protein assemblies will provide novel opportunities to define the molecular and atomic mechanisms controlling overall cell physiology.
引用
收藏
页码:144 / 150
页数:7
相关论文
共 81 条
[21]   Study of the structural dynamics of the E-coli 70S ribosome using real-space refinement [J].
Gao, HX ;
Sengupta, J ;
Valle, M ;
Korostelev, A ;
Eswar, N ;
Stagg, SM ;
Van Roey, P ;
Agrawal, RK ;
Harvey, SC ;
Sali, A ;
Chapman, MS ;
Frank, J .
CELL, 2003, 113 (06) :789-801
[22]   Electron-crystallographic refinement of the structure of bacteriorhodopsin [J].
Grigorieff, N ;
Ceska, TA ;
Downing, KH ;
Baldwin, JM ;
Henderson, R .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 259 (03) :393-421
[23]   CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data [J].
Hallin, PF ;
Ussery, DW .
BIOINFORMATICS, 2004, 20 (18) :3682-3686
[24]  
Hammond C., 2015, The Basics of Crystallography and Diffraction
[25]   Drugs targeting the ribosome [J].
Hermann, T .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (03) :355-366
[26]   ATOMIC MODEL OF THE ACTIN FILAMENT [J].
HOLMES, KC ;
POPP, D ;
GEBHARD, W ;
KABSCH, W .
NATURE, 1990, 347 (6288) :44-49
[27]   Bridging the information gap: Computational tools for intermediate resolution structure interpretation [J].
Jiang, W ;
Baker, ML ;
Ludtke, SJ ;
Chiu, W .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 308 (05) :1033-1044
[28]   DIRECT VISUALIZATION OF THE MICROTUBULE LATTICE SEAM BOTH IN-VITRO AND IN-VIVO [J].
KIKKAWA, M ;
ISHIKAWA, T ;
NAKATA, T ;
WAKABAYASHI, T ;
HIROKAWA, N .
JOURNAL OF CELL BIOLOGY, 1994, 127 (06) :1965-1971
[29]   A structural-informatics approach for mining β-sheets:: Locating sheets in intermediate-resolution density maps [J].
Kong, YF ;
Ma, JP .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 332 (02) :399-413
[30]  
Ladd M. F. C., 2003, STRUCTURE DETERMINAT