Genotoxicity of graphene nanoribbons in human mesenchymal stem cells

被引:237
作者
Akhavan, Omid [1 ,2 ]
Ghaderi, Elham [1 ]
Emamy, Hamed [1 ]
Akhavan, Fatima [1 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran 9161, Iran
[2] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran 9161, Iran
关键词
WALL CARBON NANOTUBES; IN-VITRO; OXIDE; CYTOTOXICITY; REDUCTION; TOXICITY; SHEETS; PHOTOINACTIVATION; NANOPARTICLES; ANTIOXIDANT;
D O I
10.1016/j.carbon.2012.11.058
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-layer reduced graphene oxide nanoribbons (rGONRs) were obtained through an oxidative unzipping of multi-walled carbon nanotubes and a subsequent deoxygenation by hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs) were isolated from umbilical cord blood and used for checking the concentration- and time-dependent cyto- and geno-toxic effects of the rGONRs and reduced graphene oxide sheets (rGOSs). The cell viability assay indicated significant cytotoxic effects of 10 mu g/mL rGONRs after 1 h exposure time, while the rGOSs exhibited the same cytotoxicity at concentration of 100 mu g/mL after 96 h. The oxidative stress was found as the main mechanism involved in the cytotoxicity of the rGOSs which induced a slight cell membrane damage, while RNA efflux of the hMSCs indicated that neither generation of reactive oxygen species nor the significant membrane damage of the cells could explain the cell destructions induced by the rGONRs. Our results demonstrated that, the rGONRs could penetrate into the cells and cause DNA fragmentations as well as chromosomal aberrations, even at low concentration of 1.0 mu g/mL after short exposure time of 1 h. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:419 / 431
页数:13
相关论文
共 75 条
[1]   Interfacing Live Cells with Nanocarbon Substrates [J].
Agarwal, Shuchi ;
Zhou, Xiaozhu ;
Ye, Feng ;
He, Qiyuan ;
Chen, George C. K. ;
Soo, Jianchow ;
Boey, Freddy ;
Zhang, Hua ;
Chen, Peng .
LANGMUIR, 2010, 26 (04) :2244-2247
[2]   Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide [J].
Akhavan, O. ;
Kalaee, M. ;
Alavi, Z. S. ;
Ghiasi, S. M. A. ;
Esfandiar, A. .
CARBON, 2012, 50 (08) :3015-3025
[3]   Protein Degradation and RNA Efflux of Viruses Photocatalyzed by Graphene-Tungsten Oxide Composite Under Visible Light Irradiation [J].
Akhavan, O. ;
Choobtashani, M. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (17) :9653-9659
[4]   Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner [J].
Akhavan, O. ;
Ghaderi, E. .
CARBON, 2012, 50 (05) :1853-1860
[5]   Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria [J].
Akhavan, O. ;
Azimirad, R. ;
Safa, S. .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (1-2) :598-602
[6]   Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation [J].
Akhavan, O. ;
Ghaderi, E. ;
Esfandiar, A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (19) :6279-6288
[7]   Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes [J].
Akhavan, O. ;
Abdolahad, M. ;
Abdi, Y. ;
Mohajerzadeh, S. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (02) :387-393
[8]   Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents [J].
Akhavan, O. ;
Azimirad, R. ;
Safa, S. ;
Larijani, M. M. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) :7386-7392
[9]   Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J].
Akhavan, O. ;
Abdolahad, M. ;
Esfandiar, A. ;
Mohatashamifar, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) :12955-12959
[10]   The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets [J].
Akhavan, O. .
CARBON, 2010, 48 (02) :509-519