Integrating human omics data to prioritize candidate genes

被引:26
作者
Chen, Yong [1 ,2 ,3 ]
Wu, Xuebing [4 ,5 ]
Jiang, Rui [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Automat, MOE Key Lab Bioinformat, Bioinformat Div, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Synthet & Syst Biol, TNLIST, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Inst Biophys, Beijing 100101, Peoples R China
[4] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[5] MIT, Computat & Syst Biol Grad Program, Cambridge, MA 02139 USA
来源
BMC MEDICAL GENOMICS | 2013年 / 6卷
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
GENOME-WIDE ASSOCIATION; NEUROPEPTIDE-Y; DISEASE GENES; SEMANTIC SIMILARITY; INSULIN-RESISTANCE; OBESITY; INTERACTOME; NETWORK; PHENOME; THERAPY;
D O I
10.1186/1755-8794-6-57
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: The identification of genes involved in human complex diseases remains a great challenge in computational systems biology. Although methods have been developed to use disease phenotypic similarities with a protein-protein interaction network for the prioritization of candidate genes, other valuable omics data sources have been largely overlooked in these methods. Methods: With this understanding, we proposed a method called BRIDGE to prioritize candidate genes by integrating disease phenotypic similarities with such omics data as protein-protein interactions, gene sequence similarities, gene expression patterns, gene ontology annotations, and gene pathway memberships. BRIDGE utilizes a multiple regression model with lasso penalty to automatically weight different data sources and is capable of discovering genes associated with diseases whose genetic bases are completely unknown. Results: We conducted large-scale cross-validation experiments and demonstrated that more than 60% known disease genes can be ranked top one by BRIDGE in simulated linkage intervals, suggesting the superior performance of this method. We further performed two comprehensive case studies by applying BRIDGE to predict novel genes and transcriptional networks involved in obesity and type II diabetes. Conclusion: The proposed method provides an effective and scalable way for integrating multi omics data to infer disease genes. Further applications of BRIDGE will be benefit to providing novel disease genes and underlying mechanisms of human diseases.
引用
收藏
页数:12
相关论文
共 72 条
[11]   From syndrome families to functional genomics [J].
Brunner, HG ;
van Driel, MA .
NATURE REVIEWS GENETICS, 2004, 5 (07) :545-551
[12]   Molecular therapy of obesity and diabetes by a physiological autoregulatory approach [J].
Cao, Lei ;
Lin, En-Ju D. ;
Cahill, Michael C. ;
Wang, Chuansong ;
Liu, Xianglan ;
During, Matthew J. .
NATURE MEDICINE, 2009, 15 (04) :447-454
[13]  
Chen Y, 2012, STAT INTERFACE, V5, P137
[14]   Uncover disease genes by maximizing information flow in the phenome-interactome network [J].
Chen, Yong ;
Jiang, Tao ;
Jiang, Rui .
BIOINFORMATICS, 2011, 27 (13) :I167-I176
[15]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)
[16]   Inefficiency of insulin therapy to correct apolipoprotein A-I metabolic abnormalities in non-insulin-dependent diabetes mellitus [J].
Duvillard, L ;
Pont, F ;
Florentin, E ;
Gambert, P ;
Vergès, B .
ATHEROSCLEROSIS, 2000, 152 (01) :229-237
[17]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[18]   Genetics of gene expression and its effect on disease [J].
Emilsson, Valur ;
Thorleifsson, Gudmar ;
Zhang, Bin ;
Leonardson, Amy S. ;
Zink, Florian ;
Zhu, Jun ;
Carlson, Sonia ;
Helgason, Agnar ;
Walters, G. Bragi ;
Gunnarsdottir, Steinunn ;
Mouy, Magali ;
Steinthorsdottir, Valgerdur ;
Eiriksdottir, Gudrun H. ;
Bjornsdottir, Gyda ;
Reynisdottir, Inga ;
Gudbjartsson, Daniel ;
Helgadottir, Anna ;
Jonasdottir, Aslaug ;
Jonasdottir, Adalbjorg ;
Styrkarsdottir, Unnur ;
Gretarsdottir, Solveig ;
Magnusson, Kristinn P. ;
Stefansson, Hreinn ;
Fossdal, Ragnheidur ;
Kristjansson, Kristleifur ;
Gislason, Hjortur G. ;
Stefansson, Tryggvi ;
Leifsson, Bjorn G. ;
Thorsteinsdottir, Unnur ;
Lamb, John R. ;
Gulcher, Jeffrey R. ;
Reitman, Marc L. ;
Kong, Augustine ;
Schadt, Eric E. ;
Stefansson, Kari .
NATURE, 2008, 452 (7186) :423-U2
[19]   A similarity-based method for genome-wide prediction of disease-relevant human genes [J].
Freudenberg, J ;
Propping, P .
BIOINFORMATICS, 2002, 18 :S110-S115
[20]   Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets [J].
Gandhi, TKB ;
Zhong, J ;
Mathivanan, S ;
Karthick, L ;
Chandrika, KN ;
Mohan, SS ;
Sharma, S ;
Pinkert, S ;
Nagaraju, S ;
Periaswamy, B ;
Mishra, G ;
Nandakumar, K ;
Shen, BY ;
Deshpande, N ;
Nayak, R ;
Sarker, M ;
Boeke, JD ;
Parmigiani, G ;
Schultz, J ;
Bader, JS ;
Pandey, A .
NATURE GENETICS, 2006, 38 (03) :285-293