On the statistical solution of the Riemann equation and its implications for Burgers turbulence

被引:6
作者
E, W [1 ]
Vanden Eijnden, E [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1063/1.870076
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The statistics of the multivalued solutions of the forced Riemann equation, u(t)+uu(x)=f, is considered. An exact equation for the signed probability density function of these solutions and their gradient xi=u(x), is derived, and some properties of this equation are analyzed. It is shown in particular that the tails of the signed probability density function generally decay as \xi\(-3) for large \xi\. Further considerations give bounds on the cumulative probability density function for the velocity gradient of the solution of Burgers equation. (C) 1999 American Institute of Physics. [S1070-6631(99)01708-0].
引用
收藏
页码:2149 / 2153
页数:5
相关论文
共 22 条
[1]   PDFS FOR VELOCITY AND VELOCITY-GRADIENTS IN BURGERS TURBULENCE [J].
AVELLANEDA, M ;
RYAN, R ;
WEINAN, E .
PHYSICS OF FLUIDS, 1995, 7 (12) :3067-3071
[2]   STATISTICAL PROPERTIES OF SHOCKS IN BURGERS TURBULENCE .2. TALL PROBABILITIES FOR VELOCITIES, SHOCK-STRENGTHS AND RAREFACTION INTERVALS [J].
AVELLANEDA, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 169 (01) :45-59
[3]   STATISTICAL PROPERTIES OF SHOCKS IN BURGERS TURBULENCE [J].
AVELLANEDA, M ;
WEINAN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :13-38
[4]   Intermittency of Burgers' turbulence [J].
Balkovsky, E ;
Falkovich, G ;
Kolokolov, I ;
Lebedev, V .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1452-1455
[5]   Burgers turbulence, intermittency, and nonuniversality [J].
Boldyrev, SA .
PHYSICS OF PLASMAS, 1998, 5 (05) :1681-1687
[6]   Velocity-difference probability density functions for Burgers turbulence [J].
Boldyrev, SA .
PHYSICAL REVIEW E, 1997, 55 (06) :6907-6910
[7]   SCALING AND INTERMITTENCY IN BURGERS TURBULENCE [J].
BOUCHAUD, JP ;
MEZARD, M ;
PARISI, G .
PHYSICAL REVIEW E, 1995, 52 (04) :3656-3674
[8]   Velocity fluctuations in forced Burgers turbulence [J].
Bouchaud, JP ;
Mezard, M .
PHYSICAL REVIEW E, 1996, 54 (05) :5116-5121
[9]   KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION [J].
CHEKHLOV, A ;
YAKHOT, V .
PHYSICAL REVIEW E, 1995, 51 (04) :R2739-R2742
[10]   KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION - ANOMALOUS SCALING AND PROBABILITY DENSITY-FUNCTIONS [J].
CHEKHLOV, A ;
YAKHOT, V .
PHYSICAL REVIEW E, 1995, 52 (05) :5681-5684