Stability of quantum concatenated-code Hamiltonians

被引:10
作者
Bacon, Dave [1 ,2 ]
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.78.042324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Protecting quantum information from the detrimental effects of decoherence and lack of precise quantum control is a central challenge that must be overcome if a large robust quantum computer is to be constructed. The traditional approach to achieving this is via active quantum error correction using fault-tolerant techniques. An alternative to this approach is to engineer strongly interacting many-body quantum systems that enact the quantum error correction via the natural dynamics of these systems. Here we present a method for achieving this based on the concept of concatenated quantum error correcting codes. We define a class of Hamiltonians whose ground states are concatenated quantum codes and whose energy landscape naturally causes quantum error correction. We analyze these Hamiltonians for robustness and suggest methods for implementing these highly unnatural Hamiltonians.
引用
收藏
页数:14
相关论文
共 61 条
[1]   Entanglement renormalization and topological order [J].
Aguado, Miguel ;
Vidal, Guifre .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[2]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, D ;
van Dam, W ;
Kempe, J ;
Landau, Z ;
Lloyd, S ;
Regev, O .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :42-51
[3]  
Aharonov D., 1997, P 20 9 ANN ACM S THE, P176
[4]   FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE [J].
Aharonov, Dorit ;
Ben-Or, Michael .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1207-1282
[5]  
Alicki R., ARXIVQUANTPH0603260
[6]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[7]   Subsystem fault tolerance with the Bacon-Shor code [J].
Aliferis, Panos ;
Cross, Andrew W. .
PHYSICAL REVIEW LETTERS, 2007, 98 (22)
[8]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[9]   Coherence-preserving quantum bits [J].
Bacon, D ;
Brown, KR ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 2001, 87 (24) :247902-247902
[10]  
BACON D, 2001, THESIS U CALFORNIA B