Classification of human breast cancer using gene expression profiling as a component of the survival predictor algorithm

被引:53
作者
Glinsky, GV [1 ]
Higashiyama, T [1 ]
Glinskii, AB [1 ]
机构
[1] Sidney Kimmel Canc Ctr, San Diego, CA 92121 USA
关键词
D O I
10.1158/1078-0432.CCR-03-0522
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Selection of treatment options with the highest likelihood of successful outcome for individual breast cancer patients is based to a large degree on accurate classification into subgroups with poor and good prognosis reflecting a different probability of disease recurrence and survival after therapy. Here we propose a breast cancer classification algorithm taking into account three main prognostic features determined at the time of diagnosis: estrogen receptor (ER) status; lymph node (LN) status; and gene expression signatures associated with distinct therapy outcome. Experimental Design: Using microarray expression profiling and quantitative reverse transcription-PCR analyses, we compared expression profiles of the 70-gene breast cancer survival signature in established breast cancer cell lines and primary breast carcinomas from cancer patients. We classified 295 breast cancer patients using 14-, 13-, 6-, and 4-gene survival predictor signatures into subgroups having statistically distinct probability of therapy failure (P < 0.0001). We evaluated the prognostic power of breast cancer survival predictor signatures alone and in combination with ER and LN status using Kaplan-Meier analysis. Results: The breast cancer survival predictor algorithm allowed highly accurate classification into subgroups with dramatically distinct 5- and 10-year survival after therapy of a large cohort of 295 breast cancer patients with either ER+ or ER- tumors as well as LN+ or LN- disease (P < 0.0001, log-rank test). Conclusions: Our data imply that quantitative laboratory tests measuring expression profiles of a limited set of identified small gene clusters may be useful in stratification of breast cancer patients at the time of diagnosis into subgroups with statistically distinct probability of positive outcome after therapy and assisting in selection of optimal treatment strategies. The estimated increase in survival due to the optimization of treatment protocols may reach many thousands of breast cancer survivors every year at the 10-year follow-up check point.
引用
收藏
页码:2272 / 2283
页数:12
相关论文
共 29 条
[1]  
Abe O, 1998, LANCET, V352, P930
[2]   Identification of high risk breast-cancer patients by gene expression profiling [J].
Ahr, A ;
Karn, T ;
Solbach, C ;
Seiter, T ;
Strebhardt, K ;
Holtrich, U ;
Kaufmann, M .
LANCET, 2002, 359 (9301) :131-132
[3]   Towards a novel classification of human malignancies based on gene expression patterns [J].
Alizadeh, AA ;
Ross, DT ;
Perou, CM ;
van de Rijn, M .
JOURNAL OF PATHOLOGY, 2001, 195 (01) :41-52
[4]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[5]   Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses [J].
Bhattacharjee, A ;
Richards, WG ;
Staunton, J ;
Li, C ;
Monti, S ;
Vasa, P ;
Ladd, C ;
Beheshti, J ;
Bueno, R ;
Gillette, M ;
Loda, M ;
Weber, G ;
Mark, EJ ;
Lander, ES ;
Wong, W ;
Johnson, BE ;
Golub, TR ;
Sugarbaker, DJ ;
Meyerson, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13790-13795
[6]  
Clarke M, 1998, LANCET, V351, P1451
[7]   Identifying distinct classes of bladder carcinoma using microarrays [J].
Dyrskjot, L ;
Thykjaer, T ;
Kruhoffer, M ;
Jensen, JL ;
Marcussen, N ;
Hamilton-Dutoit, S ;
Wolf, H ;
Orntoft, TF .
NATURE GENETICS, 2003, 33 (01) :90-96
[8]  
Eifel P, 2001, JNCI-J NATL CANCER I, V93, P979
[9]   Microarray analysis of xenograft-derived cancer cell lines representing multiple experimental models of human prostate cancer [J].
Glinsky, GV ;
Krones-Herzig, A ;
Glinskii, AB ;
Gebauer, G .
MOLECULAR CARCINOGENESIS, 2003, 37 (04) :209-221
[10]   Common malignancy-associated regions of transcriptional activation (MARTA) in human prostate, breast, ovarian, and colon cancers are targets for DNA amplification [J].
Glinsky, GV ;
Ivanova, YA ;
Glinskii, AB .
CANCER LETTERS, 2003, 201 (01) :67-77