Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds

被引:145
作者
Keating, JD [1 ]
Panganiban, C [1 ]
Mansfield, SD [1 ]
机构
[1] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada
关键词
yeast; fermentation; lignocellulose; inhibitors; cell recycle; ethanol;
D O I
10.1002/bit.20838
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Synthetic mixtures of predominant lignocellulosic hexose sugars were supplemented with separate aliquots of three inhibitory compounds (furfural, hydroxymethylfurfural (HMF), and acetic acid) in a series of concentrations and fermented by the spent sulfite liquor (SSL)-adapted yeast strain Tembec T1 and the natural isolate Saccharomyces cerevisiae(S. cerevisiae) Y-1528 to compare tolerance and assess fermentative efficacy. The performance of Y-1528 exceeded that of Tembec T1 by a significant margin, with faster hexose sugar consumption, higher ethanol productivity, and in the case of furfural and HMF, faster inhibitor consumption. Nevertheless, furfural had a dose-proportionate effect on sugar consumption rate and ethanol productivity in both strains, but did not substantially affect ethanol yield. HMF had a similar effect on sugar consumption rate and ethanol productivity, and also lowered ethanol yield. Surprisingly, acetic acid had the least impact on sugar consumption rate and ethanol productivity, and stimulated ethanol yield at moderate concentrations. Sequential iterations of softwood (SW) and hardwood (HW) SSL were subsequently inoculated with the two yeast strains in order to compare adaptation to, and performance in lignocellulosic substrates in a cell recycle batch fermentation (CRBF) regime. Both strains were severely affected by the HW SSL, which was attributed to specific syringyl lignin-derived degradation products and synergistic interactions between inhibitors. Though ethanologenic capacity was preserved, a net loss of performance was evident from both strains, indicating the absence of adaptation to the substrates, regardless of the sequence in which the SSL types were employed. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:1196 / 1206
页数:11
相关论文
共 54 条
[1]   IDENTIFICATION OF AROMATIC MONOMERS IN STEAM-EXPLODED POPLAR AND THEIR INFLUENCES ON ETHANOL FERMENTATION BY SACCHAROMYCES-CEREVISIAE [J].
ANDO, S ;
ARAI, I ;
KIYOTO, K ;
HANAI, S .
JOURNAL OF FERMENTATION TECHNOLOGY, 1986, 64 (06) :567-570
[2]   INHIBITION OF GLYCOLYSIS BY FURFURAL IN SACCHAROMYCES-CEREVISIAE [J].
BANERJEE, N ;
BHATNAGAR, R ;
VISWANATHAN, L .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1981, 11 (04) :226-228
[3]   THE EFFECTS OF FURFURAL ON ETHANOL-PRODUCTION BY SACCHAROMYCES-CEREVISIAE IN BATCH CULTURE [J].
BOYER, LJ ;
VEGA, JL ;
KLASSON, KT ;
CLAUSEN, EC ;
GADDY, JL .
BIOMASS & BIOENERGY, 1992, 3 (01) :41-48
[4]   Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF [J].
Cantarella, M ;
Cantarella, L ;
Gallifuoco, A ;
Spera, A ;
Alfani, F .
BIOTECHNOLOGY PROGRESS, 2004, 20 (01) :200-206
[5]   SPARKLING-WINE PRODUCTION BY CELL-RECYCLE FERMENTATION PROCESS (CRBF) [J].
CIANI, M ;
ROSINI, G .
BIOTECHNOLOGY LETTERS, 1991, 13 (07) :533-536
[6]   Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae [J].
Cronwright, GR ;
Rohwer, JM ;
Prior, BA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (09) :4448-4456
[7]   Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae [J].
Delgenes, JP ;
Moletta, R ;
Navarro, JM .
ENZYME AND MICROBIAL TECHNOLOGY, 1996, 19 (03) :220-225
[8]   THE ANTI-MICROBIAL EFFECT OF DISSOCIATED AND UNDISSOCIATED SORBIC ACID AT DIFFERENT PH LEVELS [J].
EKLUND, T .
JOURNAL OF APPLIED BACTERIOLOGY, 1983, 54 (03) :383-389
[9]   Yeast carbon catabolite repression [J].
Gancedo, JM .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (02) :334-+
[10]   Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains [J].
Garay-Arroyo, A ;
Covarrubias, AA ;
Clark, I ;
Niño, I ;
Gosset, G ;
Martinez, A .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 63 (06) :734-741