Analysis of binding interactions in an idiotope-antiidiotope protein-protein complex by double mutant cycles

被引:66
作者
Goldman, ER [1 ]
DallAcqua, W [1 ]
Braden, BC [1 ]
Mariuzza, RA [1 ]
机构
[1] UNIV MARYLAND, MARYLAND BIOTECHNOL INST, CTR ADV RES BIOTECHNOL, ROCKVILLE, MD 20850 USA
关键词
D O I
10.1021/bi961769k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The idiotope-antiidiotope complex between the anti-hen egg white lysozyme antibody D1.3 and the anti-D1.3 antibody E5.2 provides a useful model for studying protein-protein interactions. A high-resolution crystal structure of the complex is available [Fields, B. A., Goldbaum, F. A., Ysern, X., Poljak, R. J., Br Mariuzza, R. A. (1995) Nature 374, 739-742], and both components are easily produced and manipulated in Escherichia coli. We previously analyzed the relative contributions of individual residues of D1.3 to complex stabilization by site-directed mutagenesis [Dall'Acqua, W., Goldman, E. R., Eisenstein, E., gr Mariuzza, R. A. (1996) Biochemistry, 35, 9667-9676]. In the current work, we introduced single alanine substitutions in 9 out of 21 positions in the combining site of E5.2 involved in contacts with D1.3 and found that 8 of them play a significant role in ligand binding (Delta G(mutant) - Delta G(wild type) > 1.5 kcal/mol). Furthermore, energetically important E5.2 and D1.3 residues tend to be juxtaposed in the crystal structure of the complex. In order to further dissect the energetics of specific interactions in the D1.3-E5.2 interface, double mutant cycles were carried out to measure the coupling of 13 amino acid pairs, 9 of which are in direct contact in the crystal structure. The highest coupling energy (4.3 kcal/mol) was measured for a charged-neutral pair which forms a buried hydrogen bond, while side chains which interact through solvated hydrogen bonds have lower coupling energies (1.3-1.7 kcal/mol), irrespective of whether they involve charged-neutral or neutral-neutral pairs. Interaction energies of similar magnitude (1.3-1.6 kcal/mol) were measured for residues forming only van der Waals contacts. Cycles between distant residues not involved in direct contacts in the crystal structure also showed significant coupling (0.5-1.0 kcal/mol). These weak long-range interactions could be due to rearrangements in solvent or protein structure or to secondary interactions involving other residues.
引用
收藏
页码:49 / 56
页数:8
相关论文
共 40 条
[1]   EFFECTS OF SITE-SPECIFIC AMINO-ACID MODIFICATION ON PROTEIN INTERACTIONS AND BIOLOGICAL FUNCTION [J].
ACKERS, GK ;
SMITH, FR .
ANNUAL REVIEW OF BIOCHEMISTRY, 1985, 54 :597-629
[2]   TEMPERATURE-SENSITIVE MUTATIONS OF BACTERIOPHAGE-T4 LYSOZYME OCCUR AT SITES WITH LOW MOBILITY AND LOW SOLVENT ACCESSIBILITY IN THE FOLDED PROTEIN [J].
ALBER, T ;
SUN, DP ;
NYE, JA ;
MUCHMORE, DC ;
MATTHEWS, BW .
BIOCHEMISTRY, 1987, 26 (13) :3754-3758
[3]   THE USE OF DOUBLE MUTANTS TO DETECT STRUCTURAL-CHANGES IN THE ACTIVE-SITE OF THE TYROSYL-TRANSFER RNA-SYNTHETASE (BACILLUS-STEAROTHERMOPHILUS) [J].
CARTER, PJ ;
WINTER, G ;
WILKINSON, AJ ;
FERSHT, AR .
CELL, 1984, 38 (03) :835-840
[4]   HYDROPHOBIC BONDING AND ACCESSIBLE SURFACE-AREA IN PROTEINS [J].
CHOTHIA, C .
NATURE, 1974, 248 (5446) :338-339
[5]   A HOT-SPOT OF BINDING-ENERGY IN A HORMONE-RECEPTOR INTERFACE [J].
CLACKSON, T ;
WELLS, JA .
SCIENCE, 1995, 267 (5196) :383-386
[6]   COMPARISON OF A STRUCTURAL AND A FUNCTIONAL EPITOPE [J].
CUNNINGHAM, BC ;
WELLS, JA .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (03) :554-563
[7]   A mutational analysis of the binding of two different proteins to the same antibody [J].
DallAcqua, W ;
Goldman, ER ;
Eisenstein, E ;
Mariuzza, RA .
BIOCHEMISTRY, 1996, 35 (30) :9667-9676
[8]   SOLVATION ENERGY IN PROTEIN FOLDING AND BINDING [J].
EISENBERG, D ;
MCLACHLAN, AD .
NATURE, 1986, 319 (6050) :199-203
[10]   HYDROGEN-BONDING AND BIOLOGICAL SPECIFICITY ANALYZED BY PROTEIN ENGINEERING [J].
FERSHT, AR ;
SHI, JP ;
KNILLJONES, J ;
LOWE, DM ;
WILKINSON, AJ ;
BLOW, DM ;
BRICK, P ;
CARTER, P ;
WAYE, MMY ;
WINTER, G .
NATURE, 1985, 314 (6008) :235-238