Molecular Mechanisms of Presynaptic Differentiation

被引:140
作者
Jin, Yishi [1 ]
Garner, Craig C. [2 ]
机构
[1] Univ Calif San Diego, Howard Hughes Med Inst, Div Biol Sci, La Jolla, CA 92093 USA
[2] Stanford Univ, Dept Psychiat & Behav Sci, Nancy Pritzker Lab, Stanford, CA 94304 USA
关键词
synapse; active zone; presynaptic cytomatrix; transport; development; axon; ubiquitination;
D O I
10.1146/annurev.cellbio.23.090506.123417
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Information processing in the nervous system relies on properly localized and organized synaptic structures at the correct locations. The formation of synapses is a long and intricate process involving multiple interrelated steps. Decades of research have identified a large number of molecular components of the presynaptic compartment. In Addition to neurotransmitter-containing synaptic vesicles, presynaptic terminals are defined by cytoskeletal and membrane specializations that regulated exo- and endocytosis of synaptic vesicles and allow highly that maintain precise registration with postsynaptic targets. Functional studies at multiple levels have revealed complex interactions between the transport of vesicular intermediates, the presynaptic cytoskeleton, growth cone navigation, and synaptic targets. With the advent of finer anatomical, physiological, and molecular tools, great insights have been gained toward the mechanistic dissection of functionally redundant pro, cesses controlling the specificity and dynamics of synapses. This review to the cellular and molecular highlights the recent findings pertaining regulation of presynaptic differentiation.
引用
收藏
页码:237 / 262
页数:26
相关论文
共 180 条
[101]   A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport [J].
Pack-Chung, Eunju ;
Kurshan, Peri T. ;
Dickman, Dion K. ;
Schwarz, Thomas L. .
NATURE NEUROSCIENCE, 2007, 10 (08) :980-989
[102]  
PALADE GE, 1954, ANAT REC, V118, P335
[103]   In vivo imaging of preferential motor axon outgrowth to and synaptogenesis at prepatterned acetylcholine receptor clusters in embryonic zebrafish skeletal muscle [J].
Panzer, JA ;
Song, YQ ;
Balice-Gordon, RJ .
JOURNAL OF NEUROSCIENCE, 2006, 26 (03) :934-947
[104]   Hierarchical assembly of presynaptic components in defined C. elegans synapses [J].
Patel, Maulik R. ;
Lehrman, Emily K. ;
Poon, Vivian Y. ;
Crump, Justin G. ;
Zhen, Mei ;
Bargmann, Cornelia I. ;
Shen, Kang .
NATURE NEUROSCIENCE, 2006, 9 (12) :1488-1498
[105]   CYTOCHEMISTRY OF SYNAPTIC DENSITIES .1. ANALYSIS OF BISMUTH IODIDE IMPREGNATION METHOD [J].
PFENNINGER, KH .
JOURNAL OF ULTRASTRUCTURE RESEARCH, 1971, 34 (1-2) :103-+
[106]   The resilient synapse: insights from genetic interference of synaptic cell adhesion molecules [J].
Piechotta, Kerstin ;
Dudanova, Irina ;
Missler, Markus .
CELL AND TISSUE RESEARCH, 2006, 326 (02) :617-642
[107]   Presynaptic spectrin is essential for synapse stabilization [J].
Pielage, J ;
Fetter, RD ;
Davis, GW .
CURRENT BIOLOGY, 2005, 15 (10) :918-928
[108]  
PIELAGE J, 2008, CURR BIOL, V58, P195
[109]   NCAM 180 acting via a conserved C-terminal domain and MLCK is essential for effective transmission with repetitive stimulation [J].
Polo-Parada, L ;
Plattner, F ;
Bose, C ;
Landmesser, LT .
NEURON, 2005, 46 (06) :917-931
[110]   Distinct roles of different neural cell adhesion molecule (NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice [J].
Polo-Parada, L ;
Bose, CM ;
Plattner, F ;
Landmesser, LT .
JOURNAL OF NEUROSCIENCE, 2004, 24 (08) :1852-1864