Molecular Mechanisms of Presynaptic Differentiation

被引:140
作者
Jin, Yishi [1 ]
Garner, Craig C. [2 ]
机构
[1] Univ Calif San Diego, Howard Hughes Med Inst, Div Biol Sci, La Jolla, CA 92093 USA
[2] Stanford Univ, Dept Psychiat & Behav Sci, Nancy Pritzker Lab, Stanford, CA 94304 USA
关键词
synapse; active zone; presynaptic cytomatrix; transport; development; axon; ubiquitination;
D O I
10.1146/annurev.cellbio.23.090506.123417
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Information processing in the nervous system relies on properly localized and organized synaptic structures at the correct locations. The formation of synapses is a long and intricate process involving multiple interrelated steps. Decades of research have identified a large number of molecular components of the presynaptic compartment. In Addition to neurotransmitter-containing synaptic vesicles, presynaptic terminals are defined by cytoskeletal and membrane specializations that regulated exo- and endocytosis of synaptic vesicles and allow highly that maintain precise registration with postsynaptic targets. Functional studies at multiple levels have revealed complex interactions between the transport of vesicular intermediates, the presynaptic cytoskeleton, growth cone navigation, and synaptic targets. With the advent of finer anatomical, physiological, and molecular tools, great insights have been gained toward the mechanistic dissection of functionally redundant pro, cesses controlling the specificity and dynamics of synapses. This review to the cellular and molecular highlights the recent findings pertaining regulation of presynaptic differentiation.
引用
收藏
页码:237 / 262
页数:26
相关论文
共 180 条
[71]   Esrom, an ortholog of PAM (protein associated with c-myc), regulates pteridine synthesis in the zebrafish [J].
Le Guyader, S ;
Maier, J ;
Jesuthasan, S .
DEVELOPMENTAL BIOLOGY, 2005, 277 (02) :378-386
[72]   Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography [J].
Lenzi, D ;
Runyeon, JW ;
Crum, J ;
Ellisman, MH ;
Roberts, WM .
JOURNAL OF NEUROSCIENCE, 1999, 19 (01) :119-132
[73]   The ubiquitin ligase phr1 regulates axon outgrowth through modulation of microtubule dynamics [J].
Lewcock, Joseph W. ;
Genoud, Nicolas ;
Lettieri, Karen ;
Pfaff, Samuel L. .
NEURON, 2007, 56 (04) :604-620
[74]   An SCF-like ubiquitin ligase complex that controls presynaptic differentiation [J].
Liao, EH ;
Hung, W ;
Abrams, B ;
Zhen, M .
NATURE, 2004, 430 (6997) :345-350
[75]   Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo [J].
Lim, Byung Kook ;
Matsuda, Naoto ;
Poo, Mu-Ming .
NATURE NEUROSCIENCE, 2008, 11 (02) :160-169
[76]   Morphogens and synaptogenesis in Drosophila [J].
Marqués, G .
JOURNAL OF NEUROBIOLOGY, 2005, 64 (04) :417-434
[77]   A dual mechanism controlling the localization and function of exocytic v-SNAREs [J].
Martinez-Arca, S ;
Rudge, R ;
Vacca, M ;
Raposo, G ;
Camonis, J ;
Proux-Gillardeaux, V ;
Daviet, L ;
Formstecher, E ;
Hamburger, A ;
Filippini, F ;
D'Esposito, M ;
Galli, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (15) :9011-9016
[78]   Vesicle turnover in developing neurons: how to build a presynaptic terminal [J].
Matteoli, M ;
Coco, S ;
Schenk, U ;
Verderio, C .
TRENDS IN CELL BIOLOGY, 2004, 14 (03) :133-140
[79]   Dynamic aspects of CNS synapse formation [J].
McAllister, A. Mirlberley .
ANNUAL REVIEW OF NEUROSCIENCE, 2007, 30 :425-450
[80]   Highwire regulates presynaptic BMP signaling essential for synaptic growth [J].
McCabe, BD ;
Hom, S ;
Aberle, H ;
Fetter, RD ;
Marques, G ;
Haerry, TE ;
Wan, H ;
O'Connor, MB ;
Goodman, CS ;
Haghighi, AP .
NEURON, 2004, 41 (06) :891-905