Analytical estimation of scaling behavior for the entanglement complexity of a bond network

被引:11
作者
Arteca, GA [1 ]
机构
[1] Laurentian Univ, Dept Chim & Biochim, Sudbury, ON P3E 2C6, Canada
来源
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES | 2002年 / 42卷 / 02期
关键词
D O I
10.1021/ci010338s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Geometrical entanglements in a polymer network can be characterized in terms of the mean number of projected bond-bond crossings, N. Here, we present an analytical method to study the dependence of (N) over bar on the number of bonds in the network, n. Our approach shows the occurrence of power-law scaling, (N) over bar similar to n(beta). The estimated upper bound to the exponent for maximally compact networks, beta approximate to 1.38, agrees well with the values observed in simulations of transient networks in liquids and in the folding features of native states of globular proteins.
引用
收藏
页码:326 / 330
页数:5
相关论文
共 32 条
[11]  
Arteca GA, 1999, MACROMOL THEOR SIMUL, V8, P137, DOI 10.1002/(SICI)1521-3919(19990301)8:2<137::AID-MATS137>3.0.CO
[12]  
2-H
[13]   Thickness and crossing number of knots [J].
Buck, G ;
Simon, J .
TOPOLOGY AND ITS APPLICATIONS, 1999, 91 (03) :245-257
[14]   Four-thirds power law for knots and links [J].
Buck, G .
NATURE, 1998, 392 (6673) :238-239
[15]   Tight knot values deviate from linear relations [J].
Cantarella, J ;
Kusner, RB ;
Sullivan, JM .
NATURE, 1998, 392 (6673) :237-238
[16]   The minimum of knot energy functions [J].
Dai, XD ;
Diao, YN .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2000, 9 (06) :713-724
[17]  
DEGENNES PG, 1985, SCALING CONCEPTS POL
[18]   The complexity of lattice knots [J].
Diao, Y ;
Ernst, C .
TOPOLOGY AND ITS APPLICATIONS, 1998, 90 (1-3) :1-9
[19]  
Edvinsson T, 2000, MACROMOL THEOR SIMUL, V9, P398, DOI 10.1002/1521-3919(20000801)9:7<398::AID-MATS398>3.0.CO
[20]  
2-C