Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome

被引:70
作者
Huang, RY [1 ]
Kowalski, D [1 ]
机构
[1] ROSWELL PK CANC INST, DEPT MOLEC & CELLULAR BIOL, BUFFALO, NY 14263 USA
关键词
D O I
10.1093/nar/24.5.816
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A yeast autonomously replicating sequence, ARS305, shares essential components with a chromosome III replicator, ORI305, Known components include an ARS consensus sequence (ACS) element, presumed to bind the origin recognition complex (ORC), and a broad 3'-flanking sequence which contains a DNA unwinding element, Here linker substitution mutagenesis of ARS305 and analysis of plasmid mitotic stability identified three short sequence elements within the broad 3'-flanking sequence, The major functional element resides directly 3' of the ACS and the two remaining elements reside further downstream, all within non-conserved ARS sequences, To determine the contribution of the elements to replication origin function in the chromosome, selected linker mutations were transplaced into the ORI305 locus and two-dimensional gel electrophoresis was used to analyze replication bubble formation and fork directions. Mutation of the major functional element identified in the plasmid mitotic stability assay inactivated replication origin function in the chromosome, Mutation of each of the two remaining elements diminished both plasmid ARS and chromosomal origin activities to similar levels, Thus multiple DIVA elements identified in the plasmid ARS are determinants of replication origin function in the natural context of the chromosome, Comparison with two other genetically defined chromosomal replicators reveals a conservation of functional elements known to bind ORC, but no two replicators are identical in the arrangement of elements downstream of ORC binding elements or in the extent of functional sequences adjacent to the ACS.
引用
收藏
页码:816 / 823
页数:8
相关论文
共 53 条
[1]   ATP-DEPENDENT RECOGNITION OF EUKARYOTIC ORIGINS OF DNA-REPLICATION BY A MULTIPROTEIN COMPLEX [J].
BELL, SP ;
STILLMAN, B .
NATURE, 1992, 357 (6374) :128-134
[2]   BINDING AND UNWINDING - HOW T-ANTIGEN ENGAGES THE SV40 ORIGIN OF DNA-REPLICATION [J].
BOROWIEC, JA ;
DEAN, FB ;
BULLOCK, PA ;
HURWITZ, J .
CELL, 1990, 60 (02) :181-184
[3]   DUPLEX OPENING BY DNAA PROTEIN AT NOVEL SEQUENCES IN INITIATION OF REPLICATION AT THE ORIGIN OF THE ESCHERICHIA-COLI CHROMOSOME [J].
BRAMHILL, D ;
KORNBERG, A .
CELL, 1988, 52 (05) :743-755
[4]   A YEAST SILENCER CONTAINS SEQUENCES THAT CAN PROMOTE AUTONOMOUS PLASMID REPLICATION AND TRANSCRIPTIONAL ACTIVATION [J].
BRAND, AH ;
MICKLEM, G ;
NASMYTH, K .
CELL, 1987, 51 (05) :709-719
[5]   THE LOCALIZATION OF REPLICATION ORIGINS ON ARS PLASMIDS IN SACCHAROMYCES-CEREVISIAE [J].
BREWER, BJ ;
FANGMAN, WL .
CELL, 1987, 51 (03) :463-471
[6]   INITIATION PREFERENCE AT A YEAST ORIGIN OF REPLICATION [J].
BREWER, BJ ;
FANGMAN, WL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (08) :3418-3422
[7]   THE ARREST OF REPLICATION FORKS IN THE RDNA OF YEAST OCCURS INDEPENDENTLY OF TRANSCRIPTION [J].
BREWER, BJ ;
LOCKSHON, D ;
FANGMAN, WL .
CELL, 1992, 71 (02) :267-276
[8]   LOCALIZATION AND SEQUENCE-ANALYSIS OF YEAST ORIGINS OF DNA-REPLICATION [J].
BROACH, JR ;
LI, YY ;
FELDMAN, J ;
JAYARAM, M ;
ABRAHAM, J ;
NASMYTH, KA ;
HICKS, JB .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1982, 47 :1165-1173
[9]   DELETION MUTATIONS AFFECTING AUTONOMOUSLY REPLICATING SEQUENCE ARS1 OF SACCHAROMYCES-CEREVISIAE [J].
CELNIKER, SE ;
SWEDER, K ;
SRIENC, F ;
BAILEY, JE ;
CAMPBELL, JL .
MOLECULAR AND CELLULAR BIOLOGY, 1984, 4 (11) :2455-2466
[10]  
COVERLEY D, 1994, ANNU REV BIOCHEM, V63, P745, DOI 10.1146/annurev.biochem.63.1.745