共 37 条
n-type perylene to fill voids in solution processed nanoparticulate zinc oxide thin films
被引:4
作者:
Bubel, Simon
[1
,2
]
Ringk, Andreas
[3
,4
]
Strohriegl, Peter
[4
]
Schmechel, Roland
[1
,2
]
机构:
[1] Univ Duisburg Essen, Fac Engn, D-47057 Duisburg, Germany
[2] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CeNIDE, D-47057 Duisburg, Germany
[3] Dutch Polymer Inst, NL-5600 AX Eindhoven, Netherlands
[4] Univ Bayreuth, D-95440 Bayreuth, Germany
关键词:
ZNO;
PERFORMANCE;
TEMPERATURE;
SEMICONDUCTORS;
TRANSPARENT;
FABRICATION;
AMBIENT;
D O I:
10.1016/j.physe.2012.06.027
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
Using nanoparticle dispersions for printing of semiconductors would be the easiest way to evolve from classic printing technologies towards printed electronics. However, nanoparticular thin films are unfavorable in transistor applications due to two reasons: (i) The charge transport in the thin film or at its interfaces to the gate dielectric is disturbed by the voids between the nanoparticles. (ii) These layers are highly sensitive to surface adsorbates due to their high surface to volume ratio. Atmospheric surface adsorbates, e.g. on metal oxides are known to influence the electrical properties of the thin films. In order to overcome the disadvantages of the nanoparticulate thin film, this work targets both issues with a combined approach. By choosing a qualified surface adsorbate, the perturbing surface of the nanoparticles will be passivated. By using the surface adsorbate as a linker to an electron conducting organic molecule, the n-type organic will be eligible for filling the voids between the particles. We present the synthesis of a new pyrrolidone functionalized n-type perylene diimide and its application in hetero-layer nanoparticulate zinc oxide (ZnO) field-effect transistors. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2124 / 2127
页数:4
相关论文