Influence of stabilizers in ZnO nanodispersions on field-effect transistor device performance

被引:20
作者
Bubel, Simon [1 ]
Nikolova, Donna [1 ]
Mechau, Norman [1 ]
Hahn, Horst [1 ]
机构
[1] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
关键词
field effect transistors; II-VI semiconductors; nanofabrication; nanoparticles; passivation; semiconductor thin films; spin coating; suspensions; wide band gap semiconductors; zinc compounds; THIN-FILM TRANSISTORS; DEPOSITED ZINC-OXIDE; SURFACE; NANOWIRE;
D O I
10.1063/1.3097754
中图分类号
O59 [应用物理学];
学科分类号
摘要
In order to build printable inorganic electronic devices, semiconducting suspensions are needed, which can be processed at low temperatures using low-cost manufacturing techniques. Stabilized suspensions made of zinc oxide (ZnO) nanoparticles were used to fabricate field-effect transistors by spin coating. The performance of the devices is strongly affected by the nature and concentration of the compounds added to stabilize the nanodispersions. An increase in the field-effect mobility by more than one order of magnitude is obtained upon increasing the stabilizer concentration from 3 to 13 wt %. A further increase in the concentration above 13 wt % results in a decrease in the field-effect mobility. This behavior can be explained by changes in the morphology, the particle-particle junction, and the passivation of surface defect sites.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Optical properties of ZnO nanostructures [J].
Djurisic, Aleksandra B. ;
Leung, Yu Hang .
SMALL, 2006, 2 (8-9) :944-961
[2]   ZnO nanowire field-effect transistor and oxygen sensing property [J].
Fan, ZY ;
Wang, DW ;
Chang, PC ;
Tseng, WY ;
Lu, JG .
APPLIED PHYSICS LETTERS, 2004, 85 (24) :5923-5925
[3]   Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? (vol 2, pg 36, 2006) [J].
Franke, ME ;
Koplin, TJ ;
Simon, U .
SMALL, 2006, 2 (03) :301-301
[4]   Enhancement-mode ZnO thin-film transistor grown by metalorganic chemical vapor deposition [J].
Jo, Jungyol ;
Seo, Ogweon ;
Choi, Hyoshik ;
Lee, Byeonggon .
APPLIED PHYSICS EXPRESS, 2008, 1 (04) :0412021-0412023
[5]   ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process [J].
Ko, Seung H. ;
Park, Inkyu ;
Pan, Heng ;
Misra, Nipun ;
Rogers, Matthew S. ;
Grigoropoulos, Costas P. ;
Pisano, Albert P. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[6]   Investigation of PEG adsorption on the surface of zinc oxide nanoparticles [J].
Liufu, S ;
Xiao, H ;
Li, YP .
POWDER TECHNOLOGY, 2004, 145 (01) :20-24
[7]   Electrical properties of bulk ZnO [J].
Look, DC ;
Reynolds, DC ;
Sizelove, JR ;
Jones, RL ;
Litton, CW ;
Cantwell, G ;
Harsch, WC .
SOLID STATE COMMUNICATIONS, 1998, 105 (06) :399-401
[8]   Organic semiconducting oligomers for use in thin film transistors [J].
Murphy, Amanda R. ;
Frechet, Jean M. J. .
CHEMICAL REVIEWS, 2007, 107 (04) :1066-1096
[9]   Fabrication and characterizations of ZnO thin film transistors prepared by using radio frequency magnetron sputtering [J].
Navamathavan, R. ;
Choi, Chi Kyu ;
Yang, Eun-Jeong ;
Lim, Jae-Hong ;
Hwang, Dae-Kue ;
Park, Seong-Ju .
SOLID-STATE ELECTRONICS, 2008, 52 (05) :813-816
[10]   Spin-coated zinc oxide transparent transistors [J].
Norris, BJ ;
Anderson, J ;
Wager, JF ;
Keszler, DA .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (20) :L105-L107