Nanometer-Scale Infrared Spectroscopy of Heterogeneous Polymer Nanostructures Fabricated by Tip-Based Nanofabrication

被引:63
作者
Felts, Jonathan R. [1 ]
Kjoller, Kevin [2 ]
Lo, Michael [2 ]
Prater, Craig B. [2 ]
King, William P. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Champaign, IL 61820 USA
[2] Anasys Instruments, Santa Barbara, CA 93101 USA
基金
美国国家科学基金会;
关键词
atomic force microscope; AFM; thermal dip-pen nanolithography; tDPN; AFM-IR; photothermal induced resonance; nanolithography; tip based nanofabrication; TBN; RESOLUTION; NANOLITHOGRAPHY; ABSORPTION; IMPRINT;
D O I
10.1021/nn302620f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is a significant need for chemical identification and chemical imaging of nanofabricated structures and devices, especially for multiple materials integrated at the nanometer scale. Here we present nanofabrication, chemical identification, and nanometer-scale chemical imaging of polymer nanostructures with better than 100 nm spatial resolution. Polymer nanostructures of polyethylene, polystyrene, and poly(3-dodecylthiophene-2,5-diyl) were fabricated by tip-based nanofabrication. Nanometer-scale infrared measurements using atomic force microscopy infrared spectroscopy (AFM-IR) obtained quantitative chemical spectra of these nanostructures. We show chemical imaging of intersecting patterns of nanometer-scale polymer lines of different chemical compositions. The results indicate that for closely packed heterogeneous nanostructures, the spatial resolution of AFM-IR is not limited by nanometer-scale thermal diffusion, but is instead limited by the cantilever sensitivity and the signal-to-noise ratio of the AFM-IR system.
引用
收藏
页码:8015 / 8021
页数:7
相关论文
共 38 条
[1]   Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography [J].
Austin, MD ;
Ge, HX ;
Wu, W ;
Li, MT ;
Yu, ZN ;
Wasserman, D ;
Lyon, SA ;
Chou, SY .
APPLIED PHYSICS LETTERS, 2004, 84 (26) :5299-5301
[2]   Step and flash imprint lithography: Template surface treatment and defect analysis [J].
Bailey, T ;
Choi, BJ ;
Colburn, M ;
Meissl, M ;
Shaya, S ;
Ekerdt, JG ;
Sreenivasan, SV ;
Willson, CG .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (06) :3572-3577
[3]   NEAR-FIELD OPTICS - MICROSCOPY, SPECTROSCOPY, AND SURFACE MODIFICATION BEYOND THE DIFFRACTION LIMIT [J].
BETZIG, E ;
TRAUTMAN, JK .
SCIENCE, 1992, 257 (5067) :189-195
[4]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[5]   IMPRINT OF SUB-25 NM VIAS AND TRENCHES IN POLYMERS [J].
CHOU, SY ;
KRAUSS, PR ;
RENSTROM, PJ .
APPLIED PHYSICS LETTERS, 1995, 67 (21) :3114-3116
[6]   Temperature-dependence of ink transport during thermal dip-pen nanolithography [J].
Chung, Sungwook ;
Felts, Jonathan R. ;
Wang, Debin ;
King, William P. ;
De Yoreo, James J. .
APPLIED PHYSICS LETTERS, 2011, 99 (19)
[7]   Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method [J].
Dazzi, A. ;
Prazeres, R. ;
Glotin, F. ;
Ortega, J. M. ;
Al-Sawaftah, M. ;
de Frutos, M. .
ULTRAMICROSCOPY, 2008, 108 (07) :635-641
[8]   Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor [J].
Dazzi, A ;
Prazeres, R ;
Glotin, E ;
Ortega, JM .
OPTICS LETTERS, 2005, 30 (18) :2388-2390
[9]   Theory of infrared nanospectroscopy by photothermal induced resonance [J].
Dazzi, A. ;
Glotin, F. ;
Carminati, R. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (12)
[10]   Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography [J].
Demers, LM ;
Ginger, DS ;
Park, SJ ;
Li, Z ;
Chung, SW ;
Mirkin, CA .
SCIENCE, 2002, 296 (5574) :1836-1838