High-Capacity Methane Storage in Metal-Organic Frameworks M2(dhtp): The Important Role of Open Metal Sites

被引:506
作者
Wu, Hui [1 ,2 ]
Zhou, Wei [1 ,2 ]
Yildirim, Taner [1 ,3 ]
机构
[1] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[3] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
关键词
HYDROGEN STORAGE; COORDINATION POLYMER; CARBON-DIOXIDE; GAS-STORAGE; ADSORPTION; BINDING; DESIGN;
D O I
10.1021/ja900258t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We found that metal-organic framework (MOF) compounds M-2(dhtp) (open metal M = Mg, Mn, Co, Ni, Zn; dhtp = 2,5-dihydroxyterephthalate) possess exceptionally large densities of open metal sites. By adsorbing one CH4 molecule per open metal, these sites alone can generate very large methane storage capacities, 160-174 cm(3)(STP)/cm(3), approaching the DOE target of 180 cm(3)(STP)/cm(3) for material-based methane storage at room temperature. Our adsorption isotherm measurements at 298 K and 35 bar for the five M-2(dhtp) compounds yield excess methane adsorption capacities ranging from 149 to 190 cm(3)(STP)/cm(3) (derived using their crystal densities), indeed roughly equal to the predicted, maximal adsorption capacities of the open metals (within +/-10%) in these MOFs. Among the five isostructural MOFs studied, Ni-2(dhtp) exhibits the highest methane storage capacity, similar to 200 cm(3)(STP)/cm(3) in terms of absolute adsorption, potentially surpassing the DOE target by similar to 10%. Our neutron diffraction experiments clearly reveal that the primary CH4 adsorption occurs directly on the open metal sites. Initial first-principles calculations show that the binding energies of CH4 on the open metal sites are significantly higher than those on typical adsorption sites in classical MOFs, consistent with the measured large heats of methane adsorption for these materials. We attribute the enhancement of the binding strength to the unscreened electrostatic interaction between CH4 and the coordinatively unsaturated metal ions.
引用
收藏
页码:4995 / 5000
页数:6
相关论文
共 33 条
[1]   Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47 [J].
Bourrelly, S ;
Llewellyn, PL ;
Serre, C ;
Millange, F ;
Loiseau, T ;
Férey, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (39) :13519-13521
[2]  
Burchell T., 2000, SAE Tech. Pap. Ser, P2001
[3]   Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores [J].
Caskey, Stephen R. ;
Wong-Foy, Antek G. ;
Matzger, Adam J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (33) :10870-+
[4]   Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction [J].
Dietzel, Pascal D. C. ;
Johnsen, Rune E. ;
Fjellvag, Helmer ;
Bordiga, Silvia ;
Groppo, Elena ;
Chavan, Sachin ;
Blom, Richard .
CHEMICAL COMMUNICATIONS, 2008, (41) :5125-5127
[5]   Base-induced formation of two magnesium metal-organic framework compounds with a bifunctional tetratopic ligand [J].
Dietzel, Pascal D. C. ;
Blom, Richard ;
Fjellvag, Helmer .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2008, (23) :3624-3632
[6]   Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework [J].
Dietzel, PDC ;
Panella, B ;
Hirscher, M ;
Blom, R ;
Fjellvåg, H .
CHEMICAL COMMUNICATIONS, 2006, (09) :959-961
[7]   An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metaloxygen chains [J].
Dietzel, PDC ;
Morita, Y ;
Blom, R ;
Fjellvåg, H .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (39) :6354-6358
[8]   Hydrogen storage in microporous metal-organic frameworks with exposed metal sites [J].
Dinca, Mircea ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (36) :6766-6779
[9]   Design of new materials for methane storage [J].
Düren, T ;
Sarkisov, L ;
Yaghi, OM ;
Snurr, RQ .
LANGMUIR, 2004, 20 (07) :2683-2689
[10]   Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J].
Eddaoudi, M ;
Kim, J ;
Rosi, N ;
Vodak, D ;
Wachter, J ;
O'Keeffe, M ;
Yaghi, OM .
SCIENCE, 2002, 295 (5554) :469-472