Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging

被引:124
作者
Manzoor, Koyakutty [1 ]
Johny, Seby [1 ]
Thomas, Deepa [1 ]
Setua, Sonali [1 ]
Menon, Deepthy [1 ]
Nair, Shantikumar [1 ]
机构
[1] Amrita Inst Med Sci & Res Ctr, Amrita Ctr Nanosci, Cochin 682026, Kerala, India
关键词
SEMICONDUCTOR CLUSTERS; NANOCRYSTALS; CDSE; CYTOTOXICITY; SURVIVAL; CELLS;
D O I
10.1088/0957-4484/20/6/065102
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A heavy-metal-free luminescent quantum dot (QD) based on doped zinc sulfide (ZnS), conjugated with a cancer-targeting ligand, folic acid (FA), is presented as a promising bio-friendly system for targeted cancer imaging. Doped QDs were prepared by a simple aqueous method at room temperature. X-ray diffraction and transmission electron microscopy studies showed the formation of monodisperse QDs of average size similar to 4 nm with cubic (sphalerite) crystal structure. Doping of the QDs with metals (Al3+), transition metals (Cu+, Mn2+) and halides (F-) resulted in multi-color emission with dopant-specific color tunability ranging from blue (480 nm) to red (622 nm). Luminescent centers in doped QDs could be excited using bio-friendly visible light >400 nm by directly populating the dopant centers, leading to bright emission. The cytotoxicity of bare and FA conjugated QDs was tested in vitro using normal lung fibroblast cell line (L929), folate-receptor-positive (FR+) nasopharyngeal epidermoid carcinoma cell line (KB), and FR-negative (FR-) lung cancer cell line (A549). Both bare and FA-conjugated ZnS QDs elicited no apparent toxicity even at high concentrations of similar to 100 mu M and 48 h of incubation. In contrast, CdS QDs prepared under identical conditions showed relatively high toxicity even at low concentrations of similar to 0.1 mu M and 24 h of incubation. Interaction of FA-QDs with different cell lines showed highly specific attachment of QDs in the FR+ cancer cell line, leaving others unaffected. The bright and stable luminescence of the QDs could be used to image both single cancer cells and colonies of cancer cells without affecting their metabolic activity and morphology. Thus, this study presents, for the first time, the use of non-toxic, Cd-, Te-, Se-, Pb- and Hg-free luminescent QDs for targeted cancer imaging.
引用
收藏
页数:13
相关论文
共 60 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Colloidal quantum dots. From scaling laws to biological applications [J].
Alivisatos, P .
PURE AND APPLIED CHEMISTRY, 2000, 72 (1-2) :3-9
[3]  
ANTONY AC, 1992, BLOOD, V79, P2807
[4]  
AUSTIN MD, 2007, BIOCONJUG CHEM, V18, P1391
[5]   Quantum dot anti-CD conjugates: Are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? [J].
Bakalova, R ;
Ohba, H ;
Zhelev, Z ;
Nagase, T ;
Jose, R ;
Ishikawa, M ;
Baba, Y .
NANO LETTERS, 2004, 4 (09) :1567-1573
[6]   OPTICAL-PROPERTIES OF MANGANESE-DOPED NANOCRYSTALS OF ZNS [J].
BHARGAVA, RN ;
GALLAGHER, D ;
HONG, X ;
NURMIKKO, A .
PHYSICAL REVIEW LETTERS, 1994, 72 (03) :416-419
[7]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[9]   Are quantum dots ready for in vivo imaging in human subjects? [J].
Cai, Weibo ;
Hsu, Andrew R. ;
Li, Zi-Bo ;
Chen, Xiaoyuan .
NANOSCALE RESEARCH LETTERS, 2007, 2 (06) :265-281
[10]   Luminescent quantum dots for multiplexed biological detection and imaging [J].
Chan, WCW ;
Maxwell, DJ ;
Gao, XH ;
Bailey, RE ;
Han, MY ;
Nie, SM .
CURRENT OPINION IN BIOTECHNOLOGY, 2002, 13 (01) :40-46