Degradation of Host MicroRNAs by Poxvirus Poly(A) Polymerase Reveals Terminal RNA Methylation as a Protective Antiviral Mechanism

被引:84
作者
Backes, Simone [2 ]
Shapiro, Jillian S. [2 ]
Sabin, Leah R. [1 ]
Pham, Alissa M. [2 ]
Reyes, Ismarc [2 ]
Moss, Bernard [3 ]
Cherry, Sara [1 ]
tenOever, Benjamin R. [2 ]
机构
[1] Univ Penn, Dept Microbiol, Philadelphia, PA 19104 USA
[2] Mt Sinai Sch Med, Dept Microbiol, New York, NY 10029 USA
[3] NIAID, Viral Dis Lab, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
VACCINIA VIRUS; 3' ENDS; BIOGENESIS; 2'-O-METHYLATION; IDENTIFICATION; INTERFERENCE; PROTEINS; MIRNAS; METHYLTRANSFERASE; URIDYLATION;
D O I
10.1016/j.chom.2012.05.019
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The life cycle of several viruses involves host or virally encoded small noncoding RNAs, which play important roles in posttranscriptional regulation. Small noncoding RNAs include microRNAs (miRNAs), which modulate the transcriptome, and small interfering RNAs (siRNAs), which are involved in pathogen defense in plants, worms, and insects. We show that insect and mammalian poxviruses induce the degradation of host miRNAs. The virally encoded poly(A) polymerase, which polyadenylates viral transcripts, also mediates 3' polyadenylation of host miRNAs, resulting in their degradation by the host machinery. In contrast, siRNAs, which are protected by 2'O-methylation (2'OMe), were not targeted by poxviruses. These findings suggest that poxviruses may degrade host miRNAs to promote replication and that virus-mediated small RNA degradation likely contributed to 2'OMe evolution.
引用
收藏
页码:200 / 210
页数:11
相关论文
共 75 条
[1]   Target RNA-Directed Trimming and Tailing of Small Silencing RNAs [J].
Ameres, Stefan L. ;
Horwich, Michael D. ;
Hung, Jui-Hung ;
Xu, Jia ;
Ghildiyal, Megha ;
Weng, Zhiping ;
Zamore, Phillip D. .
SCIENCE, 2010, 328 (5985) :1534-1539
[2]   Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes [J].
Assarsson, Erika ;
Greenbaum, Jason A. ;
Sundstrom, Magnus ;
Schaffer, Lana ;
Hammond, Jennifer A. ;
Pasquetto, Valerie ;
Oseroff, Carla ;
Hendrickson, R. Curtis ;
Lefkowitz, Elliot J. ;
Tscharke, David C. ;
Sidney, John ;
Grey, Howard M. ;
Head, Steven R. ;
Peters, Bjoern ;
Sette, Alessandro .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (06) :2140-2145
[3]   Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines [J].
Barnes, Dwight ;
Kunitomi, Mark ;
Vignuzzi, Marco ;
Saksela, Kalle ;
Andino, Raul .
CELL HOST & MICROBE, 2008, 4 (03) :239-248
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Amsacta moorei entomopoxvirus expresses an active superoxide dismutase [J].
Becker, MN ;
Greenleaf, WB ;
Ostrov, DA ;
Moyer, RW .
JOURNAL OF VIROLOGY, 2004, 78 (19) :10265-10275
[6]   Drosophila S2 Cells Are Non-Permissive for Vaccinia Virus DNA Replication Following Entry via Low pH-Dependent Endocytosis and Early Transcription [J].
Bengali, Zain ;
Satheshkumar, P. S. ;
Yang, Zhilong ;
Weisberg, Andrea S. ;
Paran, Nir ;
Moss, Bernard .
PLOS ONE, 2011, 6 (02)
[7]   SELECTION OF RECOMBINANT VACCINIA VIRUSES ON THE BASIS OF PLAQUE-FORMATION [J].
BLASCO, R ;
MOSS, B .
GENE, 1995, 158 (02) :157-162
[8]   Arabidopsis HEN1:: A genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance [J].
Boutet, S ;
Vazquez, F ;
Liu, J ;
Béclin, C ;
Fagard, M ;
Gratias, A ;
Morel, JB ;
Crété, P ;
Chen, XM ;
Vaucheret, H .
CURRENT BIOLOGY, 2003, 13 (10) :843-848
[9]   Origins and Mechanisms of miRNAs and siRNAs [J].
Carthew, Richard W. ;
Sontheimer, Erik J. .
CELL, 2009, 136 (04) :642-655
[10]   Vaccinia virus proteome: Identification of proteins in vaccinia virus intracellular mature virion particles [J].
Chung, CS ;
Chen, CH ;
Ho, MY ;
Huang, CY ;
Liao, CL ;
Chang, W .
JOURNAL OF VIROLOGY, 2006, 80 (05) :2127-2140