Quantum Multiscale Entanglement Renormalization Ansatz Channels

被引:84
作者
Giovannetti, V. [1 ,3 ]
Montangero, S. [1 ,3 ]
Fazio, Rosario [1 ,2 ,3 ]
机构
[1] NEST CNR INFM, I-56126 Pisa, Italy
[2] Int Sch Adv Studies SISSA, I-34014 Trieste, Italy
[3] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
D O I
10.1103/PhysRevLett.101.180503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tensor network representations of many-body quantum systems can be described in terms of quantum channels. We focus on channels associated with the multiscale entanglement renormalization ansatz tensor network that has been recently introduced to efficiently describe critical systems. Our approach allows us to compute the multiscale entanglement renormalization ansatz correspondent to the thermodynamical limit of a critical system introducing a transfer matrix formalism, and to relate the system critical exponents to the convergence rates of the associated channels.
引用
收藏
页数:4
相关论文
共 29 条
[21]  
Verstraete F, ARXIVCONDMAT0407066
[22]   Entanglement renormalization [J].
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2007, 99 (22)
[23]   Efficient classical simulation of slightly entangled quantum computations [J].
Vidal, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (14)
[24]   Class of quantum many-body states that can be efficiently simulated [J].
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2008, 101 (11)
[25]  
VIDAL G, ARXIV07071454
[26]   DENSITY-MATRIX FORMULATION FOR QUANTUM RENORMALIZATION-GROUPS [J].
WHITE, SR .
PHYSICAL REVIEW LETTERS, 1992, 69 (19) :2863-2866
[27]   DENSITY-MATRIX ALGORITHMS FOR QUANTUM RENORMALIZATION-GROUPS [J].
WHITE, SR .
PHYSICAL REVIEW B, 1993, 48 (14) :10345-10356
[28]   Quantum phase transitions in matrix product systems [J].
Wolf, Michael M. ;
Ortiz, Gerardo ;
Verstraete, Frank ;
Cirac, J. Ignacio .
PHYSICAL REVIEW LETTERS, 2006, 97 (11)
[29]  
[No title captured]