Critical slowing-down of spatially nonhomogeneous patterns in a reaction-diffusion model

被引:16
作者
Castelpoggi, F [1 ]
Wio, HS [1 ]
Zanette, DH [1 ]
机构
[1] UNC, INST BALSEIRO, RA-8400 San Carlos De Bariloche, RIO NEGRO, ARGENTINA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 1997年 / 11卷 / 14期
关键词
D O I
10.1142/S0217979297000873
中图分类号
O59 [应用物理学];
学科分类号
摘要
We exploit the concept of the nonequilibrium potential in order to analize the approach to stationary homogeneous and nonhomogeneous equilibrium states in a bounded bistable reaction-diffusion model. The analysis proceeds through the study of the Lyapunov functional, in terms of a control parameter the threshold parameter phi(c)-in the neighbourhood of a critical point (where a stable and an unstable pattern coalesce), that clearly shows the phenomenon of critical slowing-down in a spatially extended system.
引用
收藏
页码:1717 / 1730
页数:14
相关论文
共 38 条
[1]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[2]   4-WAVE RESONANCE IN ELECTROHYDRODYNAMIC CONVECTION [J].
JUAREZ, MD ;
REHBERG, I .
PHYSICAL REVIEW A, 1990, 42 (04) :2096-2100
[3]   PROPAGATION INTO AN UNSTABLE STATE [J].
DEE, G .
JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (5-6) :705-717
[4]   BISTABLE SYSTEMS WITH PROPAGATING FRONTS LEADING TO PATTERN-FORMATION [J].
DEE, GT ;
VANSAARLOOS, W .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2641-2644
[5]  
DELATORRE M, 1990, PHYS REV A, V42, P5998
[6]   NONEQUILIBRIUM POTENTIAL FOR THE GINZBURG-LANDAU EQUATION IN THE PHASE-TURBULENT REGIME [J].
DESCALZI, O ;
GRAHAM, R .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 93 (04) :509-513
[7]   GRADIENT EXPANSION OF THE NONEQUILIBRIUM POTENTIAL FOR THE SUPERCRITICAL GINZBURG-LANDAU EQUATION [J].
DESCALZI, O ;
GRAHAM, R .
PHYSICS LETTERS A, 1992, 170 (02) :84-90
[8]   Nonequilibrium potential approach: Local and global stability of stationary patterns in an activator-inhibitor system with fast inhibition [J].
Drazer, G ;
Wio, HS .
PHYSICA A, 1997, 240 (3-4) :571-585
[9]  
DRAZER G, 1994, THESIS I BALSEIRO
[10]  
Fife P. C., 1979, LECT NOTES BIOMATHEM, V28