Identification of protein domains by shotgun proteolysis

被引:19
作者
Christ, D [1 ]
Winter, G [1 ]
机构
[1] MRC, Div Prot & Nucle Acid Chem, Mol Biol Lab, Cambridge CB2 1TQ, England
基金
英国医学研究理事会;
关键词
phage display; proteolysis; protein domains; protein engineering; proteomics;
D O I
10.1016/j.jmb.2006.01.057
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The identification of protein domains within multi-domain proteins is a persistent problem. Here, we describe an experimental method (shotgun proteolysis) based on random DNA fragmentation and protease selection of the encoded polypeptides on phage for this purpose. We applied the method to the Escherichia coli genome and identified 124 protease-resistant fragments; several were re-cloned for expression as soluble fragments in bacteria, and corresponded to autonomously folding units with folding energies similar to natural protein domains (Delta G(u)=3.8-6.6 kcal/mol). Structural information was available for approximately half of the selected proteins, which corresponded to compact, globular and domain-sized units that had been derived from a wide range of protein superfamilies. Furthermore, boundaries of the selected fragments correlated with domain boundaries as defined by bioinformatics predictions (R-2=0.82; p=0.016). However, predictions were incomplete or entirely lacking for the remaining fragments, reflecting the limited proteome coverage of current bioinformatics methods. Shotgun proteolysis therefore provides a means to identify domains and other autonomously folding units on a genome-wide scale, without any prior knowledge of sequence or structure. Shotgun proteolysis should be particularly valuable for structural studies of proteins and represents a high-throughput alternative to the classical limited proteolysis method for the isolation of stable components of multi-domain proteins. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:364 / 371
页数:8
相关论文
共 37 条
[1]   SCOP database in 2004: refinements integrate structure and sequence family data [J].
Andreeva, A ;
Howorth, D ;
Brenner, SE ;
Hubbard, TJP ;
Chothia, C ;
Murzin, AG .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D226-D229
[2]   PEDIGREES OF SOME MUTANT STRAINS OF ESCHERICHIA-COLI K-12 [J].
BACHMANN, BJ .
BACTERIOLOGICAL REVIEWS, 1972, 36 (04) :525-557
[3]   The Protein Data Bank [J].
Berman, HM ;
Battistuz, T ;
Bhat, TN ;
Bluhm, WF ;
Bourne, PE ;
Burkhardt, K ;
Iype, L ;
Jain, S ;
Fagan, P ;
Marvin, J ;
Padilla, D ;
Ravichandran, V ;
Schneider, B ;
Thanki, N ;
Weissig, H ;
Westbrook, JD ;
Zardecki, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :899-907
[4]   ESCHERICHIA-COLI SECRETION OF AN ACTIVE CHIMERIC ANTIBODY FRAGMENT [J].
BETTER, M ;
CHANG, CP ;
ROBINSON, RR ;
HORWITZ, AH .
SCIENCE, 1988, 240 (4855) :1041-1043
[5]   Evolution of the protein repertoire [J].
Chothia, C ;
Gough, J ;
Vogel, C ;
Teichmann, SA .
SCIENCE, 2003, 300 (5626) :1701-1703
[6]  
Christendat D, 2000, NAT STRUCT BIOL, V7, P903
[7]   A consensus view of fold space: Combining SCOP, CATH, and the Dali Domain Dictionary [J].
Day, R ;
Beck, DAC ;
Armen, RS ;
Daggett, V .
PROTEIN SCIENCE, 2003, 12 (10) :2150-2160
[8]   Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification [J].
Dean, FB ;
Nelson, JR ;
Giesler, TL ;
Lasken, RS .
GENOME RESEARCH, 2001, 11 (06) :1095-1099
[9]   Protein production: feeding the crystallographers and NMR spectroscopists [J].
Edwards, AM ;
Arrowsmith, CH ;
Christendat, D ;
Dharamsi, A ;
Friesen, JD ;
Greenblatt, JF ;
Vedadi, M .
NATURE STRUCTURAL BIOLOGY, 2000, 7 (Suppl 11) :970-972
[10]   Probing the conformational state of apomyoglobin by limited proteolysis [J].
Fontana, A ;
Zambonin, M ;
deLaureto, PP ;
DeFilippis, V ;
Clementi, A ;
Scaramella, E .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 266 (02) :223-230