Identification of a vacuolar sucrose transporter in barley and arabidopsis mesophyll cells by a tonoplast proteomic approach

被引:251
作者
Endler, A
Meyer, S
Schelbert, S
Schneider, T
Weschke, W
Peters, SW
Keller, F
Baginsky, S
Martinoia, E
Schmidt, UG [1 ]
机构
[1] Univ Zurich, Inst Plant Biol, CH-8008 Zurich, Switzerland
[2] Inst Plant Genet & Crop Res, D-06466 Gatersleben, Germany
[3] Swiss Fed Inst Technol, Inst Plant Sci, CH-8092 Zurich, Switzerland
[4] Funct Genom Ctr Zurich, CH-8092 Zurich, Switzerland
关键词
D O I
10.1104/pp.106.079533
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H+-ATPases and H+-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel tonoplast transporters, we used a proteomic approach, analyzing the tonoplast fraction of highly purified mesophyll vacuoles of the crop plant barley (Hordeum vulgare). We identified 101 proteins, including 88 vacuolar and putative vacuolar proteins. The Suc transporter (SUT) HvSUT2 was discovered among the 40 vacuolar proteins, which were previously not reported in Arabidopsis (Arabidopsis thaliana) vacuolar proteomic studies. To confirm the tonoplast localization of this Suc transporter, we constructed and expressed green fluorescent protein (GFP) fusion proteins with HvSUT2 and its closest Arabidopsis homolog, AtSUT4. Transient expression of HvSUT2-GFP and AtSUT4-GFP in Arabidopsis leaves and onion (Allium cepa) epidermal cells resulted in green fluorescence at the tonoplast, indicating that these Suc transporters are indeed located at the vacuolar membrane. Using a microcapillary, we selected mesophyll protoplasts from a leaf protoplast preparation and demonstrated unequivocally that, in contrast to the companion cell-specific AtSUC2, HvSUT2 and AtSUT4 are expressed in mesophyll protoplasts, suggesting that HvSUT2 and AtSUT4 are involved in transport and vacuolar storage of photosynthetically derived Suc.
引用
收藏
页码:196 / 207
页数:12
相关论文
共 49 条
[1]   Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking [J].
Alexandersson, E ;
Saalbach, G ;
Larsson, C ;
Kjellbom, P .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (11) :1543-1556
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   The need for guidelines in publication of peptide and protein identification data - Working group on publication guidelines for peptide and protein identification data [J].
Carr, S ;
Aebersold, R ;
Baldwin, M ;
Burlingame, A ;
Clauser, K ;
Nesvizhskii, A .
MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (06) :531-533
[4]   The vegetative vacuole proteorne of Arabidopsis thaliana reveals predicted and unexpected proteins [J].
Carter, C ;
Pan, SQ ;
Zouhar, J ;
Avila, EL ;
Girke, T ;
Raikhel, NV .
PLANT CELL, 2004, 16 (12) :3285-3303
[5]   Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis [J].
Catalá, R ;
Santos, E ;
Alonso, JM ;
Ecker, JR ;
Martínez-Zapater, JM ;
Salinas, J .
PLANT CELL, 2003, 15 (12) :2940-2951
[6]   Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet [J].
Chiou, TJ ;
Bush, DR .
PLANT PHYSIOLOGY, 1996, 110 (02) :511-520
[7]  
Conceicao ADS, 1997, PLANT CELL, V9, P571, DOI 10.2307/3870508
[8]   AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis [J].
Dietrich, D ;
Hammes, U ;
Thor, K ;
Suter-Grotemeyer, M ;
Flückiger, R ;
Slusarenko, AJ ;
Ward, JM ;
Rentsch, D .
PLANT JOURNAL, 2004, 40 (04) :488-499
[9]   MONOCLONAL-ANTIBODIES TO THE ALTERNATIVE OXIDASE OF HIGHER-PLANT MITOCHONDRIA [J].
ELTHON, TE ;
NICKELS, RL ;
MCINTOSH, L .
PLANT PHYSIOLOGY, 1989, 89 (04) :1311-1317
[10]   The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier [J].
Emmerlich, V ;
Linka, N ;
Reinhold, T ;
Hurth, MA ;
Traub, M ;
Martinoia, E ;
Neuhaus, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :11122-11126