Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation

被引:142
作者
Akhavan, O. [1 ,2 ]
Ghaderi, E. [1 ]
Rahimi, K. [1 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran, Iran
[2] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran, Iran
关键词
OXIDE; NANOPARTICLES; CYTOTOXICITY; ANTIOXIDANT; REDUCTION; BACTERIA; DELIVERY; CELLS; GAS;
D O I
10.1039/c2jm35228a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adverse effect of graphene-titanium oxide composite films (containing sheet-like surface morphology) on Caenorhabditis elegans nematodes (as a model for minuscule animals) was investigated in a solar light-induced photocatalytic process. X-ray photoelectron spectroscopy demonstrated photocatalytic reduction of the chemically exfoliated graphene oxide sheets included in the TiO2 film. Furthermore, formation of TiC and Ti-O-C bonds in the composite film (obtained through annealing at 450 degrees C in air) resulted in a substantial delay in the recombination rate of the photoexcited electron-hole pairs and more efficient photocatalytic processes. The composite film showed a type of concentration-dependent cytotoxic effect on the nematodes under irradiation. The rapid (4 h) photoinactivation of the nematodes by the composite films was assigned to a high generation of reactive oxygen species (ROS) under solar light irradiation (similar to 25x of the ROS level of a control sample in dark), rather than the strong photoinactivation of Escherichia coli bacteria, which was utilized as the food of the nematodes in a culture medium. The threshold ROS level for inactivation of the nematodes was found similar to 19x of the control level which was unreachable using TiO2. These results warn us of the destruction of minuscule animals of our environment through extensive application of highly efficient graphene-titanium oxide photocatalysts.
引用
收藏
页码:23260 / 23266
页数:7
相关论文
共 52 条
[1]   Interfacing Live Cells with Nanocarbon Substrates [J].
Agarwal, Shuchi ;
Zhou, Xiaozhu ;
Ye, Feng ;
He, Qiyuan ;
Chen, George C. K. ;
Soo, Jianchow ;
Boey, Freddy ;
Zhang, Hua ;
Chen, Peng .
LANGMUIR, 2010, 26 (04) :2244-2247
[2]   Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide [J].
Akhavan, O. ;
Kalaee, M. ;
Alavi, Z. S. ;
Ghiasi, S. M. A. ;
Esfandiar, A. .
CARBON, 2012, 50 (08) :3015-3025
[3]   Protein Degradation and RNA Efflux of Viruses Photocatalyzed by Graphene-Tungsten Oxide Composite Under Visible Light Irradiation [J].
Akhavan, O. ;
Choobtashani, M. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (17) :9653-9659
[4]   Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner [J].
Akhavan, O. ;
Ghaderi, E. .
CARBON, 2012, 50 (05) :1853-1860
[5]   Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation [J].
Akhavan, O. ;
Ghaderi, E. ;
Esfandiar, A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (19) :6279-6288
[6]   Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents [J].
Akhavan, O. ;
Azimirad, R. ;
Safa, S. ;
Larijani, M. M. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) :7386-7392
[7]   Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J].
Akhavan, O. ;
Abdolahad, M. ;
Esfandiar, A. ;
Mohatashamifar, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) :12955-12959
[8]   Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities [J].
Akhavan, O. ;
Ghaderi, E. .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (21-22) :3676-3683
[9]   Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J].
Akhavan, O. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20214-20220
[10]   Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation [J].
Akhavan, O. ;
Abdolahad, M. ;
Abdi, Y. ;
Mohajerzadeh, S. .
CARBON, 2009, 47 (14) :3280-3287